Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting...

46
Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP

Transcript of Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting...

Page 1: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

Examenprogramma VWO 2010

Domein: Golven en stralingSubdomein: Radioactiviteit

Samenvatting

Ioniserende straling

ISP

Page 2: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 2

Inhoud

1 Soorten ioniserende straling2 Radioactief verval3 Effecten van ioniserende straling4 Kernsplijting en kernfusie5 Kernenergie

Page 3: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 3

1 Soorten ioniserende straling

• Atoombouw • Röntgenbuis• Röntgenstraling• Kernstraling• Ioniserend vermogen• Doordringend vermogen• Bronnen• Detectie

Page 4: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 4

Atoombouw

• kern (protonen en neutronen) en elektronenwolk (elektronen in schillen)

• atoomnummer Z: aantal protonen in de kern

• massagetal A: aantal nucleonen(of kerndeeltjes: protonen en neutronen)

• notatie: • isotopen: hetzelfde aantal protonen (Z) in de kern (dus:

hetzelfde element X), maar verschillend aantal neutronen (N) in de kern en dus verschillend massagetal (A = Z + N)

AZ X

Page 5: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 5

Röntgenbuis

• door verhitting kathode K komen elektronen vrij

• elektronen worden versneld door spanning UAK

• elektronen botsen tegen anode A• interactie met atomen van anodemateriaal geeft röntgenstraling

Page 6: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 6

Röntgenstraling

• bij interactie met atomen van het anodemateriaal worden elektronen afgeremd of veranderen van richting en zenden fotonen uit – remstraling

• sommige elektronen schieten een elektron weg uit één van de binnenschillen van het atoom, waarna het gat wordt opgevuld door een elektron uit een hogere schil – karakteristieke röntgenstraling

• fotonenergie: Ef = h·f

Page 7: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 7

Kernstraling

• instabiele kern verandert in een andere kern onder uitzending van α-, β- of γ-straling

• α-straling: heliumkernen ( ) • β-straling: elektronen ( ) – ontstaat doordat een

neutron in de atoomkern vervalt tot een proton en een elektron

• γ-straling: fotonen – ontstaat doordat de atoomkern vanuit een aangeslagen toestand terugvalt naar de grondtoestand

42He

0-1e

Page 8: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 8

Ioniserend vermogen

• bij doordringen van straling in een stof wordt energie afgegeven aan elektronen in de buitenste schillen van de atomen

• stralingsdeeltje (α,β) of foton (röntgen,γ) stoot bij botsing een elektron uit het atoom: ionisatie

Page 9: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 9

Doordringend vermogen

• α- en β-straling: dracht • dracht R: afstand waarover het stralingsdeeltje al zijn

energie heeft afgegeven aan het materiaal – hangt af van de soort straling, de energie van het stralings-deeltje en de dichtheid van het materiaal

Page 10: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 10

Doordringend vermogen

• röntgen- en γ-straling: halveringsdikte

• halveringsdikte d1/2: afstand waarover een materiaal de helft van de invallende fotonen heeft geabsor-beerd – hangt af van de fotonenergie en de dichtheid van het materiaal

• de intensiteit Id van de doorgelaten straling neemt exponentieel af met de dikte d van het materiaal:

d/d

I =I 1/21d 0 2

Page 11: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 11

Ioniserend en doordringend vermogen

soort straling ioniserend vermogen

doordringend vermogen

• α-straling groot klein

• β-straling matig matig

• röntgenstraling klein groot

• γ-straling klein groot

Page 12: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 12

Bronnen

natuurlijke stralingsbronnen: achtergrondstraling• kosmos• bodem, water en lucht > voedsel en bouwmaterialen

kunstmatige stralingsbronnen• medische toepassingen: diagnose en therapie• kernreactoren, opslagplaatsen van radioactief afval• deeltjesversnellers• consumentenproducten zoals rookmelders en beeld-

schermen• fall-out door nucleaire rampen en kernbomproeven

Page 13: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 13

Detectie

Geiger-Müller telbuis• gasgevulde metalen cilinder (kathode) met op de cilinderas een metalen draad

(anode)• spanning van 1 kV• vooral gevoelig voor β-

deeltjes• deeltje veroorzaakt ionisatie

van één of meer gasatomen• vrijgemaakte elektronen versnellen naar anode en ioniseren daarbij meer

gasatomen: er ontstaat een lawine van elektronen die een spanningspuls levert• elektronische teller telt het aantal pulsen

Page 14: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 14

Detectie

Bellenvat• vat met doorzichtige vloeistof• temperatuur vloeistof vlak onder kookpunt• invallende straling zorgt voor

ionisaties • door drukverlaging gaat de

vloeistof spontaan koken: rondde ionen vormen zich damp-bellen

• banen van de deeltjes zijn zichtbaar als bellenspoor• gekromde banen onder invloed van magnetisch veld• meestal wordt een foto van het bellenspoor gemaakt

Page 15: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 15

Detectie

Dradenkamer• een rij dicht op elkaar liggende anode-draden is

gespannen tussen twee kathode-platen• invallende straling zorgt voor ionisaties• de draden detecteren de door ionisatie vrijgekomen

elektronen• een computerprogramma

berekent het ionisatiespoor

deeltje

anode-draden

kathode-platen

Page 16: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 16

Detectie

Dosismeter• bevat materiaal dat de energie

van de invallende straling absorbeert

• vroeger een fotografische film – na ontwikkelen bepaalt de zwarting de dosis

• tegenwoordig thermoluminescentie – straling brengt atomen in aangeslagen toestand, na verhitting komt energie vrij in de vorm van licht: de lichtintensiteit bepaalt de dosis.

• uitvoering als badge

Page 17: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 17

2 Radioactief verval

• Halveringstijd

• Activiteit

• Vervalvergelijking

Page 18: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 18

Halveringstijd

• bij radioactief verval verandert een instabiele kern in een andere kern onder uitzending van α-, β- of γ-straling

• de halveringstijd t1/2 is de tijd waarin de helft van het aanwezige aantal instabiele kernen vervalt

• het aantal aanwezige instabiele kernen Nt neemt exponentieel af in de loop van de tijd t:

• vervalconstante:

t t tN N N1/2/ -λ1

t 0 02= = e

t1/2

ln 2λ =

Page 19: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 19

Activiteit

• de activiteit A is het aantal vervallende kernen per seconde:

• eenheid: becquerel (Bq)

• de activiteit At neemt expo-nentieel af in de loop van de tijd t:

• vervalkromme

NA

=-Δ

t t tA A A1/2/ -λ1

t 0 02= = e

Page 20: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 20

Vervalvergelijking

• α-verval:

• het α-deeltje is een heliumkern• behoudsprincipes:

massagetal: A = (A – 4) + 4atoomnummer: Z = (Z – 2) + 2

A AZ Z

-4 4-2 2X Y + He

AZX

A-4Z-2 Y

He42

Page 21: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 21

Vervalvergelijking

• β–-verval:

• het β–-deeltje is een elektron • behoudsprincipes:

massagetal: A = A + 0atoomnummer: Z = (Z + 1) – 1

• bij β–-verval vervalt een neutron in de kern tot een proton en een elektron:

• het elektron wordt door de kern uitgestoten

A AZ Z

0+1 -1X Y + e

1 1 00 1 -1n p + e

AZX

AZ+1Y

β-

0-1e (β - deeltje)

Page 22: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 22

Vervalvergelijking

• β+-verval:

• het β+-deeltje is een positron: het antideeltje van het elektron

• behoudsprincipes:massagetal: A = A + 0atoomnummer: Z = (Z – 1) + 1

• bij β+-verval vervalt een proton in de kern tot een neutron en een positron:

• het positron wordt door de kern uitgestoten

A AZ Z -

01 1X Y + e

1 1 01 0 1p n+ e

AZX

AZ-1Y

β+

Page 23: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 23

Vervalvergelijking

• γ-verval:

• het γ-deeltje is een foton • na α- of β-verval bezit de kern vaak nog teveel

energie: de kern bevindt zich in een aangeslagen toestand (aangegeven door de letter m achter het massagetal)

• de kern raakt deze energie kwijt door het uitzenden van een γ-foton

• γ-straling wordt dus uitgezonden in combinatie met α- of β-straling

A AZ Z

m Y Y +γ

AmZY

AZY

γ

Page 24: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 24

Vervalvergelijking

• K-vangst:

• de kern trekt een elektron uit de K-schil de kern in • daar combineert het ‘ingevangen’ elektron met een

proton tot een neutron:

• het ‘gat’ in de K-schil wordt gevuld door een elektron uit de L- of M-schil onder uitzenden van een röntgen-foton

A AZ Z -

0-1 1X + e Y

1 0 11 -1 0p + e n

Page 25: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 25

3 Effecten van ioniserende straling

• Bron – straling – ontvanger

• Bestraling en besmetting

• Dosis en dosisequivalent

• Beschermingsmaatregelen

• Afwegen van risico’s

Page 26: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 26

Bron – straling – ontvanger

ioniserendestralingbron ontvanger

besmetting

radioactiviteit bestraling

radioactieve stofradioactief vervalactiviteithalveringstijd

soorten stralingioniserend vermogendoordringend vermogen

dosisdosisequivalentabsorptiehalveringsdikte

• schema:

Page 27: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 27

Bestraling en besmetting

• bij bestraling absorbeert een ontvanger straling ‘van buitenaf’: uitwendige bestraling

• bij besmetting heeft een ontvanger zelf radioactieve stoffen binnengekregen (op of in het lichaam) en ontvangt daardoor straling ‘van binnenuit’: inwendige bestraling

ioniserendestralingbron ontvanger

besmetting

radioactiviteit bestraling

Page 28: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 28

Dosis en dosisequivalent

• de dosis D is de geabsorbeerde stralingsenergie per kilogram van het absorberende materiaal:

• eenheid: gray (Gy) (1 Gy = 1J/kg)• het dosisequivalent H is de dosis, gecorrigeerd voor

het biologisch effect (of de aangerichte schade) van de verschillende soorten straling:

• eenheid: sievert (Sv)

• weegfactor: Qα = 20 en Qβ = Qγ = Qrö = 1

ED

mstr=

H =Q D

Page 29: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 29

Beschermingsmaatregelen

• het jaarlijkse dosisequivalent van zo’n 2 mSv als gevolg van de natuurlijke achtergrondstraling is onontkoombaar

• de ontvangen extra dosis moet zo laag mogelijk zijn en onder de dosislimiet blijven

• er zijn drie mogelijkheden om het stralingsrisico voor stralingswerkers te beperken:• verkorten van de tijd dat de stralingswerker met de bron bezig is• afscherming van de bron• vergroten van de afstand tot de bron

Page 30: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 30

Afwegen van risico’s

• toepassingen moeten gerechtvaardigd zijn• de ontvangen stralingsdosis moet zo laag mogelijk

zijn en onder de dosislimiet blijven• bij medisch diagnostische stralingstoepassingen

steeds nagaan of er alternatieven zijn (zoals MRI of echoscopie)

• voor medisch therapeutische stralingstoepassingen (bestraling) geldt een andere afweging: het risico van niet behandelen tegenover het risico van de stralingsdosis

• deze stralingsdosis valt niet onder de dosislimiet

Page 31: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 31

4 Kernsplijting en kernfusie

• Bindingsenergie en massadefect

• Bindingsenergie per nucleon

• Energie bij kernsplijting en kernfusie

Page 32: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 32

Bindingsenergie en massadefect

• de energie die nodig is voor het afbreken van de atoomkern tot ‘losse’ nucleonen (protonen en neutronen) – en dus de energie die vrijkomt bij het opbouwen van die kern uit ‘losse’ nucleonen – is de bindings-energie Eb

• de totale massa van de ‘losse’ nucleonen is groter dan de massa van de kern

• het verschil in massa is het massadefect Δm• volgens de equivalentie van massa en

energie (E = m·c2) geldt:

Eb

E m c 2b =Δ

Page 33: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 33

Bindingsenergie per nucleon

• de bindingsenergie Eb gedeeld door het massagetal A is de bindingsenergie per nucleon: Eb/A

• de bindingsenergie pernucleon hangt af vanhet massagetal – en isdus per elementverschillend

• bij fusie van twee lichtekernen en bij splijting van een zware kern komtbindingsenergie vrij

fusie

splijting

Page 34: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 34

Energie bij kernsplijting en kernfusie

• de vrijkomende energie bij kernsplijting of kernfusie is gelijk aan het verschil in bindingsenergie van de kernen voor en na de reactie

• de vrijkomende energie is te berekenen uit het massadefect: het verschil tussen de som van de kernmassa’s voor en na de reactie

• de kernmassa m is te berekenen uit de atoommassa (gecorrigeerd voor de aanwezige elektronen) en de atomaire massa-eenheid u

E m c m m c2 2voor na=Δ =(Σ -Σ )

Page 35: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 35

5 Kernenergie

• Kernsplijting• Kettingreactie• Kernreactor• Splijtstofstaven• Moderator• Regelstaven• Splijtstofcyclus• Kernafval• Veiligheidsaspecten• Milieuaspecten

Page 36: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 36

Kernsplijting

• bij beschieting met neutronen kan een zware atoomkern splijten

• een voorbeeld is de splijting van de uraniumisotoop U-235:

• bij deze splijtingsreactie is sprake van een massa-defect: er komt energie vrij in de vorm van kinetische energie van de splijtingsproducten

• de splijtingsproducten zijn instabiel en vervallen onder uitzenden van α-, β- en/of γ-straling

235 1 144 89 192 0 56 36 0

235 1 140 94 192 0 54 38 0

U + n Ba + K r +3 n

U + n Xe + Sr +2 n

Page 37: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 37

Kettingreactie

• bij de splijting van U-235 ontstaan twee of drie vrije neutronen

• deze vrije neutronen kunnen op hun beurt weer nieuwe uraniumkernen splijten: zo ontstaat een kettingreactie.

Page 38: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 38

Kernreactor

• in een kernreactor is sprake van een gecontroleerde kettingreactie van kernsplijtingen om energie vrij te maken: elke kernsplijting veroorzaakt één volgende kernsplijting

• de energie wordt gebruikt om stoom te maken• de stoom drijft een turbine/

generator-combinatie aan • de kerncentrale levert elek-

trische energie

Page 39: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 39

Splijtstofstaven

• in de kernreactor zit de splijtstof (U-235) in splijtstof-staven

• natuurlijk uranium bestaat vooral uit U-238 en slechts voor 0,7% uit het splijtbare U-235

• voor het kernsplijtingsproces is verrijkt uranium met 3 tot 5% U-235 nodig

• uit het U-238 in de splijtstofstaven ontstaat plutonium (Pu-239) door absorptie van neutronen:

238 1 239 092 0 94 -1U + n Pu+2 e

Page 40: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 40

Moderator

• voor splijting van een uraniumkern is een langzaam neutron nodig

• de neutronen die ontstaan bij splijting van een uraniumkern zijn hoog energetisch

• om deze neutronen zodanig af te remmen dat ze een nieuwe uraniumkern kunnen splijten – en zo de kettingreactie in stand kunnen houden – is een moderator nodig

• in een kerncentrale is de moderator meestal water

Page 41: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 41

Regelstaven

• de kettingreactie van kernsplijtingen wordt onder controle gehouden met regelstaven

• deze regelstaven bestaan uit een materiaal dat neutronen absorbeert zonder dat er verdere reacties optreden: boor of cadmium

• in een kritische reactor veroorzaakt precies één van de bij splijting vrijkomende neutronen een nieuwe splijtingsreactie

• de kernreactor levert dan een constant vermogen

Page 42: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 42

Splijtstofcyclus

• schema:

uranium-winning

uranium-verrijking

productiesplijtstofstaven

kerncentrale

opwerkingsplijtstofstaven

radioactiefafval

Page 43: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 43

Kernafval

• in een kerncentrale, maar ook in ziekenhuizen en onderzoekscentra wordt kernafval geproduceerd

• laag- en middelradioactief afval zoals kleding, papier, water- en luchtfilters wordt in Nederland boven-gronds opgeslagen bij de COVRA

• hoogradioactief kernsplijtingsafval gaat vanuit Nederland naar Frankrijk voor opwerking

• bij opwerking wordt het overgebleven uranium en het gevormde plutonium uit het kernsplijtingsafval gehaald voor hergebruik als splijtstof

Page 44: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 44

Veiligheidsaspecten

• in een Nederlandse kerncentrale wordt zorgvuldig gelet op de veiligheid door:• ontwerp van de centrale met veiligheidsomhulling• correct onderhoud van de centrale• regels en procedures bij het werken met de centrale• toezicht van de overheid op naleving van de regels

Page 45: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 45

Milieuaspecten

• bij normaal functioneren levert een kerncentrale een extra stralingsdosis van niet meer dan 10 μSv per jaar per persoon

• een kerncentrale van 1000 MW verbruikt per dag 3,2 kg uranium, een kolencentrale heeft voor eenzelfde energieproductie 10.600 ton steenkool nodig

• de voorraden splijtstof (uranium) en fossiele brand-stof (aardgas, aardolie en steenkool) zijn eindig

• een thermische centrale (op fossiele brandstof) draagt bij aan versterking van het broeikaseffect, een kerncentrale levert hoogradioactief kernsplijtings-afval

Page 46: Examenprogramma VWO 2010 Domein: Golven en straling Subdomein: Radioactiviteit Samenvatting Ioniserende straling ISP.

ISP Examenprogramma VWO 2010 46

Informatie

• onder achtergrondinformatie op het leerlingendeel van deze website staat aanvullende informatie over onder andere de eigenschappen, de effecten en de toepassingen van ioniserende straling