Celestial Navigation Study

11
John Pederson Homemade Celestial Navigation General Overview: For the past several years, as a researchbased hobby, I’ve set out to learn and practice the “lost art” of celestial navigation. In the past, navigators would measure the angular heights of the sun and stars, using the information to plot their position on the globe (in degrees of latitude and longitude). With instruments I made from household materials, I’ve sought to pinpoint my location in the same way, drawing on techniques from various cultures around the world. The Polynesian seafarers, whom I researched as a history project, used their knowledge of star positions to navigate and colonize a third of the Earth’s surface without any instruments. Arab traders used simple ones to tell their latitude in the featureless Arabian Desert. European and American navigators, up until World War II, used highly accurate sextants to locate themselves to within a mile. I’ve researched all of their techniques to help me do the same. As a further challenge, American explorers used such instruments to determine the local time; this compensated for their inaccurate timepieces. I researched and performed this task as well; the technique uses the same navigation concepts. Constructing the Instruments: Building instruments at home of the same caliber as those of professional craftsmen is impossible, so I used various tricks to overcome the limitations of household items. Below is one of the first instruments I created, a quadrant. It can measure the vertical angle of an object above the horizon by using a plumb bob. When one tilts the quadrant a certain number of degrees upward, its plumb bob points to the equivalent number of degrees on the scale. In usage, I sight through the tube on top, let the string swing downward and settle, pinch the string to its place on the scale, and read the angle. I fitted the sighting tube, a straw, with a pinhole sight, allowing focus on both faraway and nearby objects simultaneously. (It’s similar to the pinhole camera used to produce the famous James Bond gun barrel sequence, where the target and the gun barrel’s rifling are both in focus.) Below is picture of the instrument, plus one showing me sighting the top of a tree.

Transcript of Celestial Navigation Study

Page 1: Celestial Navigation Study

John  Pederson                  

Homemade  Celestial  Navigation  

General  Overview:  

For  the  past  several  years,  as  a  research-­‐based  hobby,  I’ve  set  out  to  learn  and  practice  the  “lost  art”  of  celestial  navigation.    In  the  past,  navigators  would  measure  the  angular  heights  of  the  sun  and  stars,  using  the  information  to  plot  their  position  on  the  globe  (in  degrees  of  latitude  and  longitude).    With  instruments  I  made  from  household  materials,  I’ve  sought  to  pinpoint  my  location  in  the  same  way,  drawing  on  techniques  from  various  cultures  around  the  world.  

The  Polynesian  seafarers,  whom  I  researched  as  a  history  project,  used  their  knowledge  of  star  positions  to  navigate  and  colonize  a  third  of  the  Earth’s  surface  without  any  instruments.    Arab  traders  used  simple  ones  to  tell  their  latitude  in  the  featureless  Arabian  Desert.    European  and  American  navigators,  up  until  World  War  II,  used  highly  accurate  sextants  to  locate  themselves  to  within  a  mile.    I’ve  researched  all  of  their  techniques  to  help  me  do  the  same.  

As  a  further  challenge,  American  explorers  used  such  instruments  to  determine  the  local  time;  this  compensated  for  their  inaccurate  timepieces.    I  researched  and  performed  this  task  as  well;  the  technique  uses  the  same  navigation  concepts.  

 

Constructing  the  Instruments:  

Building  instruments  at  home  of  the  same  caliber  as  those  of  professional  craftsmen  is  impossible,  so  I  used  various  tricks  to  overcome  the  limitations  of  household  items.  

Below  is  one  of  the  first  instruments  I  created,  a  quadrant.    It  can  measure  the  vertical  angle  of  an  object  above  the  horizon  by  using  a  plumb  bob.    When  one  tilts  the  quadrant  a  certain  number  of  degrees  upward,  its  plumb  bob  points  to  the  equivalent  number  of  degrees  on  the  scale.    In  usage,  I  sight  through  the  tube  on  top,  let  the  string  swing  downward  and  settle,  pinch  the  string  to  its  place  on  the  scale,  and  read  the  angle.  

I  fitted  the  sighting  tube,  a  straw,  with  a  pinhole  sight,  allowing  focus  on  both  faraway  and  nearby  objects  simultaneously.    (It’s  similar  to  the  pinhole  camera  used  to  produce  the  famous  James  Bond  gun  barrel  sequence,  where  the  target  and  the  gun  barrel’s  rifling  are  both  in  focus.)    Below  is  picture  of  the  instrument,  plus  one  showing  me  sighting  the  top  of  a  tree.  

Page 2: Celestial Navigation Study

 

 

Page 3: Celestial Navigation Study

The  second  instrument  I  made  is  a  sextant,  an  instrument  that  relies  on  the  positioning  of  two  mirrors  to  optically  determine  angles  between  objects.    One  looks  into  the  device,  swings  the  arm  (or  in  my  case,  rotates  the  CD  mirror)  until  the  two  objects’  images  appear  superimposed,  and  reads  the  angle  on  the  scale.  

Because  the  instrument  requires  a  high  degree  of  dimensional  precision,  I  used  Legos  to  provide  precise  right  angles.    The  perpendicular  pivot  point  is  also  difficult  to  replicate,  so  I  used  a  CD  case.    (Everything  that  reflects  light  on  the  sextant  must  be  perpendicular  to  the  base,  for  not  doing  so  causes  the  images  one  sees  to  be  misaligned;  this  affects  the  angle  measured.)  

The  tiny  arc  (only  about  6  cm  in  radius)  is  impossible  to  read  past  integer  degrees,  so  I  drew  and  printed  a  vernier  scale  to  theoretically  achieve  minute  accuracy.    (1  degree  =  60  minutes  of  arc.)    In  practice,  I  could  only  read  the  scale  to  around  15  arc  minutes,  for  extreme  precision  is  needed  to  match  the  arc  of  the  vernier  exactly  with  the  arc  of  the  sextant  arm.  

The  mirror  edges  are  rough,  for  they  are  cut-­‐up  makeup  mirrors.    I  removed  half  of  the  silvering  from  the  mirror  on  the  CD  case  –  this  allows  me  to  see  both  sighted  objects  at  the  same  time,  one  in  each  half  of  the  mirror.  

 

Page 4: Celestial Navigation Study

 

 

The  above  image  shows  the  sextant  in  operation;  I’m  measuring  the  angle  between  my  desk  lamp  and  my  globe.    The  central  mirror  on  the  CD  itself  (its  edge  is  just  visible  on  the  right)  rotates  with  the  CD,  allowing  the  angle  it  makes  with  the  mirror  on  the  CD  case  (very  center  of  picture)  to  be  easily  adjusted.    The  light  coming  from  the  lamp  (just  outside  the  picture,  to  the  right)  is  reflecting  off  the  central  mirror  on  the  CD,  reflecting  again  off  the  mirror  on  the  CD  case,  and  reaching  the  camera  as  an  image  of  the  lamp  (visible  in  the  CD  case  mirror).    In  this  picture,  the  lamp  appears  to  be  visually  lined  up  with  the  edge  of  the  globe.    By  reading  the  angle  that  the  central  mirror  was  rotated,  I  can  determine  the  angle  between  the  two  objects.  

The  third  instrument  I  made  is  an  artificial  horizon.    In  the  suburbs  of  Houston,  I  cannot  see  the  horizon  –  there  are  way  too  many  trees  and  buildings  in  the  way.    A  sextant,  without  a  plumb  line,  needs  an  external  reference  to  measure  angles.    North  American  and  Antarctic  explorers  solved  this  problem:  by  using  a  pan  of  mercury  covered  with  a  windscreen,  they  would  sight  the  angle  between  a  star  and  its  reflected  image  in  the  tray.    This  measurement  was  double  the  angle  between  the  star  and  the  invisible  horizon.  

For  obvious  reasons,  I  didn’t  want  to  handle  mercury,  so  I  used  plain  water  in  my  horizon.    The  windscreen  needs  to  have  perpendicular  glass  panes  (to  avoid  refraction  error),  so  I  used  Legos  again  to  get  sufficient  ninety-­‐degree  accuracy.    

Page 5: Celestial Navigation Study

Also,  the  water’s  surface  needs  to  be  completely  shielded  from  wind,  so  pardon  the  unattractive  masking  tape  –  it’s  making  an  airtight  seal.    Below  is  a  photo  of  the  reflected  image  it  produces.  

 

Page 6: Celestial Navigation Study

 

 

You  can  see  both  a  flashlight  and  its  reflected  image  in  this  picture  of  the  artificial  horizon  (the  triple  dots  in  the  clear  plastic  dish).    If  the  flashlight  were  as  far  away  as  the  stars,  the  bisector  of  the  angle  between  the  images  would  be  the  true  horizon.  

 

Calculator  Programming:  

The  theory  behind  celestial  navigation  involves  a  lot  of  spherical  geometry  and  trigonometric  ratios,  for  one  is  calculating  angles  and  distances  on  triangles  that  span  the  globe.    In  the  past,  navigators  used  precomputed  tables  to  “reduce”  their  sights;  nowadays,  a  scientific  calculator  can  do  the  calculations  directly.    I  learned  calculator  programming  from  a  friend  of  mine,  so  I  wrote  the  requisite  formulas  into  

Page 7: Celestial Navigation Study

a  program  that  prompts  you  for  values,  performs  the  calculations,  and  returns  the  information  I  need  to  plot  my  position  on  a  chart.  

The  method  of  sight  reduction  I  use  to  turn  measured  celestial  angles  into  chart  positions  is  called  the  “azimuth  intercept  method”.    The  method  uses  the  sighted  angle  and  the  time  of  observation  to  produce  a  “line  of  position”,  or  a  line  across  the  Earth’s  surface  that  passes  through  where  I  am.    To  find  my  position  on  this  line,  I  need  at  least  two  lines  of  position  to  intersect.  

I  created  a  second  program  to  plot  the  lines  on  the  calculator’s  graph  itself.    This  makes  it  easy  for  me  to  find  my  location  –  I  simply  use  the  <Intercept>  function  to  find  where  the  lines  meet.    Below  is  a  real  intersection,  or  fix  of  my  location,  from  two  sextant  sights  that  I  did.  

 

Another  technique  of  sight  reduction,  based  on  the  same  principles,  allows  one  to  sight  the  sun  and  calculate  the  local  time  that  the  sight  was  taken  –  without  the  use  of  a  watch.    This  trick  was  useful  to  American  explorers  with  inaccurate  timepieces.  

I  took  the  time  sights  with  the  quadrant,  because  using  the  sextant  would  have  required  dark  solar  shades  (to  protect  my  eyes  from  the  sun’s  image).    I  didn’t  look  directly  at  the  sun;  I  used  the  sighting  tube’s  shadow  to  reverse-­‐sight  the  sun’s  altitude.    By  this,  I  mean  that  I  aligned  the  sighting  tube  backwards;  when  I  could  see  the  light  from  the  pinhole  sight’s  hole  in  the  shadow,  it  meant  that  the  tube  was  

Page 8: Celestial Navigation Study

perfectly  aligned  with  the  sun’s  rays.    (In  the  picture  below,  you  can  see  the  hole’s  speck  of  light  on  my  thigh,  in  the  middle  of  the  tube’s  shadow.)    I  then  read  the  angle.  

 

I  programmed  the  necessary  trigonometry  for  the  method  into  a  third  program;  it  uses  the  sight  taken,  your  latitude,  and  the  declination  of  the  sun  on  that  day  to  provide  the  local  time.    Because  this  “local  apparent  time”  is  not  CST,  I  needed  to  add  several  corrections  to  check  my  accuracy.  

Below  is  a  picture  of  a  sample  calculation  page  –  it  shows  the  various  corrections  I  make  for  each  time  sight  that  I  do.    I  start  by  recording  the  sun’s  angular  height  and  the  exact  time  I  took  the  sight.    (Recording  the  time  is  purely  to  determine  my  error  –  if  I  were  actually  trying  to  figure  out  the  local  time  from  scratch,  I  would  obviously  not  have  access  to  a  watch!)    I  then  record  the  day’s  mean  values  of  the  sun’s  declination  and  the  equation  of  time.    (These  values  are  defined  below.)    Using  my  third  program,  I  calculate  the  local  apparent  time  based  on  my  approximate  latitude,  the  sun’s  declination,  and  the  recorded  height  of  the  sun.    To  this  time  (2:57:22  in  the  example)  I  add  the  equation  of  time  value  for  that  day  (+00:05:11)  to  get  the  local  mean  time.    If  I  didn’t  have  a  watch  and  were  truly  lost,  I  would  stop  here;  however,  I’m  in  a  city  full  of  clocks  and  appointments,  so  I  do  some  more  corrections  to  convert  that  time  into  CST.    By  adding  the  correction  for  daylight  savings  time  (+1:00:00)  and  compensating  for  my  longitude  west  of  the  CST  zone  line  

Page 9: Celestial Navigation Study

(+00:21:58),  I  get  the  time  of  my  sight  in  CST,  which  I  then  compare  to  my  watch  recording  to  get  an  error.  

Without  a  nautical  almanac  on  hand,  the  sun’s  declination  and  equation  of  time  value  are  difficult  to  know  precisely.    (The  sun’s  declination  is  how  far  north  or  south  of  the  equator  the  sun  appears  to  be  on  a  certain  day  of  the  year;  the  equation  of  time  is  a  correction  for  the  Earth’s  elliptical  orbit  and  its  tilt,  both  of  which  affect  the  sun’s  position  in  the  sky.)    To  address  this,  I  wrote  a  fourth  program;  it  uses  trigonometric  equations  to  approximate  these  two  effects,  thus  calculating  the  two  values  for  any  day  I  wish.  

Below  the  sample  time  calculation  is  a  screenshot  of  my  declination/equation  of  time  value  calculation  program.  

 

Page 10: Celestial Navigation Study

 

 

Conclusions:  

Through  research,  careful  instrument  construction,  and  programming,  I  am  able  to  practice  celestial  navigation  with  respectable  accuracy  (by  pre-­‐GPS  standards,  at  least).  

I  can  sight  the  altitude  of  stars  to  within  a  fourth  of  a  degree,  using  my  homemade  sextant  and  artificial  horizon.    For  less  precision,  I  can  use  my  quadrant  to  measure  angles  to  within  a  degree.    Both  instruments  are  made  from  household  materials,  too.  

With  the  sights,  I  can  use  my  own  calculator  programs  to  plot  lines  of  position  and  achieve  location  fixes.    I  have  actually  located  myself  to  within  a  tenth  of  a  degree  of  latitude  and  longitude!  

I  can  find  the  local  time  and  CST  using  only  a  quadrant  and  a  graphing  calculator.    My  average  error,  decreasing  with  experience,  is  2  minutes  20  seconds.    That’s  about  as  accurate  as  most  people’s  watches!  

I  now  have  a  profound  appreciation  for  the  navigators  of  the  cultures  mentioned,  made  stronger  with  every  measurement  I’ve  taken  over  the  past  three  years.    This  pursuit  has  been  truly  intellectually  fulfilling;  I  never  dreamed  it  would  take  me  this  far,  so  I  can’t  wait  to  see  where  it  will  take  me  next.  

Page 11: Celestial Navigation Study

References  I’ve  Used:  

http://www.samlow.com/sail-­‐nav/starnavigation.htm  

This  site  teaches  some  basic  theory  behind  celestial  navigation,  specifically  how  the  stars  appear  to  move  as  one’s  location  changes.    Discusses  other  Polynesian  techniques.  

http://www.northwestjournal.ca/dtnav.html  

This  magazine  article  discusses  the  reconstructed  and  reanalyzed  techniques  of  the  North  American  explorer  David  Thompson.    Provides  several  worked-­‐out  and  explained  examples  of  various  sextant  and  navigational  procedures.    This  is  where  I  sourced  the  formulas  for  local  time  sights.  

http://straitofmagellan.blogspot.com/search/label/Celestial%20Navigation%20101  

This  is  a  collection  of  blog  articles  outlining  the  basics  behind  the  azimuth  intercept  method,  as  instructed  by  a  USCG  licensed  captain.