API650 Tank Design

download API650 Tank Design

of 89

Transcript of API650 Tank Design

  • 7/27/2019 API650 Tank Design

    1/89

    1

    2

    1

    Dc 1040

    G 1.04

    G' 1.04

    7

    FYmin 240

    FTmin 450

    E 195000

    Tmax 150.0

    Tmin N/A

    Sd 160

    St 180

    Pi 5.00

    Pe 0.60

    f 400

    H1 6.3

    CA 3.0

    CA 3.0

    CA 3.0

    CA 3.0

    CA 3.0

    CA 3.0

    2 :

    14.0

    Do 4.512

    Di 4.500

    Dn 4.506

    H 6.30

    RCone 2.32

    RDome 3.60

    A' 16.43

    0 56

    D E S I G N D A T A

    Roof Type

    Roof-to-Shell Joint Type

    Fabrication

    Purpose

    Material Group

    Smallest of the allowable tensile stresses (Roof, Shell, Ring)

    High Liquid Level

    Bottom

    Shell

    Roof Slope

    Roof Angle

    Outside Dia.

    Inside Dia.

    Developed Area

    Roof Height Above Shell

    Minimum Yield Strength

    Recycle AA Ta

    Group IV

    Density of Contents

    Specific Gravity of Contents (For Appendix A Only)

    Material

    Specific Gravity of Contents

    Allowable Product Design Stress at Design Temperature

    Allowable Hydrostatic Test Stress at Design Temperature

    Internal Pressure

    External Pressure

    Minimum Tensile Strength

    Modulus of Elasticity

    Maximum Design Temperature

    Minimum Design Temperature

    Roof

    Structure

    Anchor Bolts

    Nozzles, etc.

    Nominal Dia. ( Inside Dia. + Shell Thk. )

    Total Height

    Cone Roof Dish Radius

    Dome Roof Dish Radius

  • 7/27/2019 API650 Tank Design

    2/89

    SHELL 0.49 1.0

    20.60 41.2

    0.00 0.0

    0.00

    0.00

    0.00

    21.10 42.22

    1.28 2.5

    ALL 27.43 67.34

    1.67 4.1

    Superimposed Lr 1.

    Snow Load S

    External Pressuer Pe 0.60

    Basic Wind Speed V 13

    COMB1 DL + Lr+ 0.4 x Pe App. R 3.2

    COMB2 DL + 0.4 x Lr+ Pe App. R 2.7

    COMB3 DL + S + 0.4 x Pe App. R 1.7

    COMB4 DL + 0.4 x S + Pe App. R 2.1

    Pr App.V 3.27

    Ps App. V 1.0

    W App. V 0.77

    W1 Table 3-21a 36.1

    W2 Table 3-21a 42.4

    W3 Table 3-21a 57.22

    PART FYmin Factor FYmin' FTmin Factor Ftmin' E

    ROOF 240 1.00 240 450 1.00 450 195000

    SHELL 240 1.00 240 450 1.00 450 195000

    BOTTOM 240 1.00 240 450 1.00 450 195000

    STIFF. 250 1.00 250 400 1.00 400 195000

    ANCHOR 250 1.00 250 400 1.00 400 205000

    Notation Normal Factor Modified

    JEb 1.00 1.00 1.00

    JE 1 00 1 00 1 00

    M A T E R I A L P R O P E R T I E S

    J O I N T E F F I C I E N C Y

    Top Angle

    Course(s)

    Wind Girders

    Ladder

    Insulation

    Others

    ROOF

    Max(COMB1:COMB4)

  • 7/27/2019 API650 Tank Design

    3/89

    WidthPress.

    HeadHL1' td tt Max( td,t t ) tsmin tsmin

    m m m mm mm mm mm mm

    3.6.1.2 3.6.3.2 3.6.3.2 3.6.3.2 3.6.1.1 A.4.1

    1 1.950 0.51 6.81 3.93 0.80 3.93 5 4.47

    2 1.950 0.51 4.86 3.65 0.56 3.65 5 4.03

    3 0.450 0.51 2.91 3.37 0.32 3.37 5 3.59

    4 1.950 0.51 2.46 3.31 0.26 3.31 5 3.49

    5 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    6 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    7 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    8 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    9 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    10 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    11 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    12 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00

    6.300

    ts1 (mm) = 6

    m kN kg mm

    1 1.950 12.75 1300.16 3.0

    2 1.950 12.75 1300.16 3.0

    3 0.450 2.94 300.04 3.0

    4 1.950 12.75 1300.16 3.0

    5 0.000 0.00 0.00 0.0

    6 0.000 0.00 0.00 0.0

    7 0.000 0.00 0.00 0.0

    8 0.000 0.00 0.00 0.0

    9 0.000 0.00 0.00 0.0

    10 0.000 0.00 0.00 0.0

    11 0.000 0.00 0.00 0.0

    12 0 000 0 00 0 00 0 0

    S H E L L D E S I G

    Width

    3.6.1.2

    Course#

    Course #

    S H E L L W E I G H T S U M

    Shell Wt.

    (Uncorroded) Thk. - CA

  • 7/27/2019 API650 Tank Design

    4/89

    tbmin tbmin CA tb-re 'd

    mm mm mm mm

    3.4.1 J.3.2.1 3.4.1

    6 6 3.0 9.0

    tmax tmin tA v

    Cone 12.5 4.73 4.83

    Dome - - -

    kN kgs kN kgs kN kgs kN kgs

    8.16 831.34 4.65 474.28 41.21 4200.51 1.01 102.9

    5.71 581.94 3.26 331.99 20.60 2100.26 0.50 50.47

    mm mm mm mm mm mm

    Uncorroded 49 80 80 6 74 74 57.78

    Corroded 3 77 77 3 74.0 74 56.63

    Zmin Zfurn'

    cm3

    cm3

    3.97 4.75

    tb th - CA tc/ts Rc R2 Wh/Comp. Wc Areq'd m

    mm mm mm mm m mm mm mm2

    Detail

    R O O F - T O - S H E L L J O I N T D

    T O P W I N D G I R D E

    Hz. Leg Vt. Leg b - t NA DisThk a - t

    W E I G H T S U M

    R O O F P L A T E D

    Shell Plt. Wt.Annular Plt. Wt.

    B O T T O M P L A T E

    Bottom Plt. Wt.

    ANGLE

    Top Wind Girder

  • 7/27/2019 API650 Tank Design

    5/89

    tb th tc/ts Xcone/dome Xshell Areq'd V.7.2.2

    mm mm mm mm mm mm2

    a - 5 3.0 163.57 69.67 83.18

    b - 5 3.0 163.57 69.67 83.18

    c - 5 3.0 163.57 69.67 83.18

    d - 5 3.0 163.57 69.67 83.18

    e - 5 3.0 163.57 69.67 83.18

    f - 5 3.0 163.57 69.67 83.18

    g - 5 3.0 163.57 69.67 83.18

    h 10 5 3.0 163.57 69.67 83.18

    i 10 5 3.0 163.57 69.67 83.18

    k 10 5 10 163.57 69.67 83.18

    Kz Kzt Kd V I G

    - - - mph - -

    3.9.7.1 a 1.04 1 0.95 117 1 0.85

    Client Info 1.04 1 0.95 117 1 0.85

    Max. Height of Unstiffened Shell & transformed shell height

    ts1 D V H1 H1 - modified

    mm m kph m m

    3.00 4.506 138 29.26 24.17

    As Htr < H1 --- Intermediate Wind Girder is not required.

    Verification of Unstiffened Shell ( As per Appendix V )

    ( D / tsmin )0.75

    [ ( HTS / D ) ( FYmin / E )0.5

    ] 0.00675 0.0396

    Elastic Buckling Criteria Satisfied.

    Ps E / ( 45609 ( HTS / D ) ( D / tsmin )0.5

    ) 1.01

    Design external pressure for an unstiffened tank shell satisfied.

    tsmin ( 73.05 ( HTS Ps )0.4

    D0.6

    ) / ( E )0.4

    6

    Minimum shell thickness required for a specified external pressure satisfied.

    Ref

    I N T E R M E D I A T E W I N D G I

    R O O F - T O - S H E L L & B O T T O M - T O -

    Detail

    [ A P P E N D I X

  • 7/27/2019 API650 Tank Design

    6/89

    Intermediate Stiffener Ring Design t 6

    STIFFtshell Q 2 x wshell Ireq'd Ifurn'd Ashell cont. Ar

    mm N/m mm cm4

    cm4

    mm2

    m

    1 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    2 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    3 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    4 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    5 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    6 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #D

    7 0 - - - - -

    8 0 - - - - -

    9 0 - - - - -

    10 0 - - - - -

    tshell Vl 2 x wshell Ireq'd Ifurn'd Ashell cont. Ar

    mm N/m mm cm4

    cm4

    mm2

    m

    TOP 6 1586.56 98.54 1.16 11 295.61 8

    BOTT 6 1586.56 98.54 1.16 11 295.61 8

    vs Vs1 Vs2

    Do E S Pe tbtm min tfurn'd tfurn'd

    4512 144 0.60 7850 4.73 8 5

    177.64 20885 0.09 0.28 0.19 0.31 0

    -0.09

    BWS Pressure Proj. Area Fo

    O V E R T U R N I N G

    NT

    0.70

    S T R E N G T H O F S T I F F E N E R

    V A C U U M C O N D I T I

  • 7/27/2019 API650 Tank Design

    7/89

    BWS Pressure Proj. Area F - WIN

    kph kPa m2 kN

    0.454 28.426 12.896

    0.760 1.267 0.963

    F - FRIC. > F - WIND --- Tank is stable, anchorage

    D th Mw Ms P Pt

    m[ ft ]

    mm[ in. ]

    N-m[ ft-lbs ]

    N-m[ ft-lbs ]

    kPa[in. of water ]

    kPa[in. of wate

    SI 4.506 8 42735 37635 5.00 6.25

    US 14.78 0.31 31519.86 27758.40 20.09 25.12

    Do 45

    BCD 49

    BWS 1

    2

    Pd

    Pall.

    Pact.

    A N C H O R C H A I R

    Anchor Chair Design NOT Ad

    1.5 x Actual bolt Load

    [ ( 4 Mw ) / D ] - W2

    [ ( 4 Ms ) / D ] - W2

    [ ( P - 8 th ) 4.08 D2

    ] + [ ( 4 Mw ) / D ] - W1

    [ ( P - 8 th ) 4.08 D2

    ] + [ ( 4 Ms ) / D ] - W1

    Maximum Allowable Anchor-Bolt Load

    WIND LOAD

    U P L I F T L O A D S

    FAILURE PRESSURE

    [ ( P - th ) 4.08 D2

    ] - W1

    [ ( Pt - 8 th ) 4.08 D2

    ] - W2

    [ ( 1.5 Pf- 8 th ) 4.08 D2

    ] -W3

    S L I D I N G R E S I S

    138

    SEISMIC LOAD

    DESIGN PRESSURE + WIND

    DESIGN PRESSURE + SEISMIC

    Tank Outside Dia.

    Bolt Circle Dia. ( BCD )

    Basic Wind Speed

    Earthquake (Y = Yes, N = No)

    Design Load

    UPLIFT LOAD CASES

    DESIGN PRESSURE

    TEST PRESSURE

    FORMULAE

    Units

  • 7/27/2019 API650 Tank Design

    8/89

    a 300 mm

    b 200 mm

    cmin 9.17 mm

    cused 16.00 mm

    d 50.8 mm

    eused 200 mm

    emin 60 mm

    fused 50 mm

    fmin 29 mm

    gused 100

    gmin 76 mm

    hused 310 mm

    hmax 900 mm

    hmin 152.4 mm

    jused 16 mm

    jmin 12.70 mm

    k 125 mm

    L mm

    m 8 mm

    P kN

    r mm

    R 2256 mm

    Sinduced kPa

    Sallowable kPa

    t 6 mm

    deg

    Z

    jK

    wmin 6 mm

    WV

    WH

    W

    For an allowable stress of 13.6 ksi on a fillet weld, the allowable load per lin in. is 9.62 kips per lin in. of weld size.

    For weld size of 0.24 in. the allowable load therefore is 2.27 kips.

    Distance from Outside of Top-Plate to edge of hole

    Top-Plate Length ( radial direction )

    A N C H O R C H A I R D E S I G N C A

    ( A I S I - E - 1 , V O L U M E II,

    Top-Plate Width ( along shell )

    Top Plate

    Horizontal Load

    Total Load on Weld

    Gusset Plate - Shell Weld

    Anchor-bolt Diameter

    Anchor-bolt Eccentricity

    Distance between Vertical Plates

    Chair Height

    Top-Plate Thickness

    Vertical Load

    Stress at Point

    Stress at Point

    Vertical-Plate Thickness

    Vertical-Plate Width ( average width for tapered plates )

    Column Length

    Shell or Column Thickness

    Cone Angle ( measured from axis of cone )

    Bottom or Base Plate Thickness

    Load

    Least Radius of Gyration

    Nominal Shell Radius

    Reduction for Factor

    Check to limit slenderness upto 86.6

    Weld Size

  • 7/27/2019 API650 Tank Design

    9/89

    W

    Wf

    Ww

    Wo

    Wh

    Fw

    Rw

    Mw

    DL

    LL

    Wo

    Wh

    Fw

    Rw

    Mw

    h1

    h2

    h3

    a1

    a2

    a3

    w1

    w2

    w3

    WE

    C.O.G.

    W6

    WF

    Self Weight of Tank

    Weight of Fluid in Tank at Operating Conditions

    Weight of Water in Tank at Hydrotest Conditions

    Dead load, shell, roof & ext. structure loads

    S U M M A R Y O F F O U N D A T I O N L O A D

    O P E R A T I N G & H Y D R O S T A T I C T E

    Uniform Load Operating Condition

    Uniform Load Hydrotest Condition

    Base Shear due to wind load

    Reaction due to wind load

    Moment due to wind load

    W I N D L O A D T R A N S F E R R E D T O F O

    Height of Roof

    Base shear due to wind

    Reaction due to wind

    Moment due to wind load

    Consider 15-20 % variation in weight while designing the f

    E M P T Y C O N D I T I O N

    Uniform load, operating condition

    Uniform load, hydrotest load

    Base Plate Thickness

    a1 = h1 / 2

    a2 = h2 / 2 +h1

    a3 = h3 / 3 + h1 + h2

    C E N T R E O F G R A V

    Weight of Bottom Plate

    F U L L O F W A T E R C O N D I T I

    Height of Shell

    Live Load

    Weight of Tank (Full of Water)

    Weight of Shell

    Weight of Roof

    Total Empty Weight of Tank

    C.O.G. in Empty Condition

    Weight of Water

    Weight of Shell + Weight of Water

  • 7/27/2019 API650 Tank Design

    10/89

    So = 0.4Ss 0.112

    Ss = 2.5SP 0

    S1 = 1.25SP 0

    Ss = 1.5Fa 2.4

    S1 = 0.6Fv/T 0.760

    Ci H tu D p E

    - m mm m kg / m3

    Mpa

    6.4 6.30 6 4.51 1040 195000

    So SP SDS I Fa

    %g %g %g - -

    0.112 0 0.30 1.25 1.6

    S T R U C T U R A L P E R I O D O

    S P E C T R A L A C C E L E R A T I O

    S E I S M I C D E S I G N [ A P

    I m p u l s I v e S p e c t r a l A c c .

    I m p u l s I v e N a t u r a l P e r I o d & C o n v e c t

    Site Class

    Anchorage Condition

    Vertical Acceleration

    MCE Ground Motion Definitions

    Aspact Ratio

    Inverse Aspact Ratio

    Seismic Use Group

    Importance Factor

  • 7/27/2019 API650 Tank Design

    11/89

    TC > TL

    Ac = KSD1 ( TL / Tc2

    ) ( I / Rwc )

    Ac = 2.5 Q Fa So ( ( Ts TL / Tc2

    ) ( I / Rwc )

    SEISMIC DESIGN FACTORS

    DESIGN FORCES

    Equivalent lateral seismic design force

    lateral acceleration coefficient

    Effective Weight contributing to seismic response

    Ws Wr Wf Wi Wc WP

    N N N N N N

    89100 18950 15530 1383984 269710 1639640

    D H D/H WP

    m m - N

    4.51 6.30 0.72 1639640

    SDS Av Wi Wc

    %g N N

    0.299 0.04183424 1383984 269710

    Ai Wi Xi Ws Xs Wr

    E F F E C T I V E W E I G H T

    V E R T I C A L S E I S M

    E f f e c t i v e I m p u l s I v e W e i g h t & E f f

    D E S I G N L

    I m p u l s I v e N a t u r a l P e r I o d & C o n v

    O V E R T U R N I N G

    R I n g w a l l M o

  • 7/27/2019 API650 Tank Design

    12/89

    Thickness of the tank floor plate provided under the shell may be greater than or e

    tank floor plate ( i.e., ta > tb ) with the following restrictions:

    less Corrosion Allowance ts - CA 3.00

    Actual Thk. Btm Plt. tb 7.00

    Tank Self Anchored?

    a ) The resisting force is adequate for tank stability ( i.e. the anchorage ratio, J > 1

    b ) The maximum width of annulus for determining the resisting force is 3.5% of th

    c ) The shell compression satisfies E.6.2.2

    d ) The req'd annular plate thickness does not exceed the thickness of the btm she

    e ) Piping flexibility requirements are satisfied.

    Shell Compression in Self-Anchored Tanks

    Max. longitudinal shell compression stress at the bottom of the shell when there is

    c = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2

    ) ) ( 1 / ( 1000 ts ) )

    Max. longitudinal shell compression stress at the bottom of the shell when there is

    c = ( ( ( wt (1 + 0.4 Av ) + wa ) / ( 0.607 -0.18667 J2.3

    ) ) - wa ) ( 1 / ( 1000 ts ) )

    wt 5247 N/m

    Av 0.04183424 %g

    Mrw 402509 N-m

    D 4.506 m

    ts 3.00 mm

    wa 27250 N/m

    J 0.61 -

    c 10.190 MPa

    Shell Compression in Mechanically-Anchored Tanks

    Max. longitudinal shell compression stress at the bottom of the shell when there is

    c = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2

    ) ) ( 1 / ( 1000 ts ) )

    wt 5247 N/m

    Av 0.0418 %g

    R e s I s t a n c e t o t h e d e s I g n o v e r t u r n I n g

    A N N U L A R P L A T E R

  • 7/27/2019 API650 Tank Design

    13/89

  • 7/27/2019 API650 Tank Design

    14/89

  • 7/27/2019 API650 Tank Design

    15/89

  • 7/27/2019 API650 Tank Design

    16/89

    DYNAMIC LIQUID HOOP FORCES

    When D / H is greater than or equal to 1.333

    Ni = 8.48 Ai G D H ( ( Y / H ) - 0.5 ( Y / H )2

    ) TANH ( 0.866 D / H )

    D H D / H 0.866 ( D / H TANH 4 Y Y / H 0.5 ( Y / H )

    4.51 6.30 0.72 0.6194 0.5507 6.30 1.000 0.500

    When D / H is less than 1.333 and Y is less than 0.75 D

    Ni = 5.22 Ai G D2

    ( ( Y / ( 0.75 D ) ) - 0.5 ( Y / ( 0.75 D ))2

    )

    D Y Y / D Ai G Ni

    4.51 4.00 0.89 0.0934 1.04 4.97

    When D / H is less than 1.333 and Y is greater than or equal to 0.75 D

    Ni = 2.6 Ai G D2

    D Ai G Ni

    4.51 0.0934 1.04 5.13

    For Convective

    Nc = 1.85 Ac G D2 COSH ( 3.68 ( H - Y ) / D ) / COSH (3.68 H / D )

    D H Y .68 ( H - Y ) / 3.68 ( H / D ) COSH 4 COSH 5 Ac

    0.00 0.00 6.70 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.0860

    When purchaser specifies that vertical acceleration need not be considered (i.e. Av = 0), the combined hoop

    stress shall be defined by Equation E-22. The dynamic hoop tensile stress shall be directly combined with the

    product hydrostatic design stress in determining the total stress.

    When vertical acceleration not specified T = h s = ( Nh SQRT ( Ni2

    + Nc2

    ) ) / t

    h s Nh Ni Nc t

  • 7/27/2019 API650 Tank Design

    17/89

  • 7/27/2019 API650 Tank Design

    18/89

  • 7/27/2019 API650 Tank Design

    19/89

  • 7/27/2019 API650 Tank Design

    20/89

  • 7/27/2019 API650 Tank Design

    21/89

  • 7/27/2019 API650 Tank Design

    22/89

  • 7/27/2019 API650 Tank Design

    23/89

  • 7/27/2019 API650 Tank Design

    24/89

    APPENDIX E - SEISMIC DESIGN OF STORAGE TANKS

    Specific Gravity G 1.04 -

    Tank Dia. D 4.506 m

    Tank Height H 6.30 m

    Aspact Ratio D/H 0.72 -

    Inverse Aspact Ratio H/D 1.40 -

    Bottom Plt. Thk. tbtm 7.00 mm

    First Shell Course Thk. tsn 3.00 mm

    Minimum specified yield strength of shell course FYmin 240.00 MPa

    Height from bottom of the shell to CG Xs 3.15 m

    Height from top of shell to the roof and roof appurtenance Xr 0.167 m

    Seismic Use Group SUG II

    Importance Factor I 1.25

    Site Class SC D

    Anchorage Condition

    Vertical Acceleration

    MCE Ground Motion Definitions

    SP 0

    Ss 0.28S1 1.4

    So 0.112

    Fa 1.6

    Fv 2.4 So = 0.4Ss 0.112

    SP Ss = 2.5SP 0

    SDS S1 = 1.25SP 0

    Ss = 1.5Fa 2.4

    S1 = 0.6Fv/T 0.760

    Structural Period of Vibration

    Impulsive Natural Period Ci = 6.4 -

    Mechanically Anchored

    Consider

  • 7/27/2019 API650 Tank Design

    25/89

    H = 6.30 m

    tu = 6 mm

    D = 4.51 m

    p = 1040 kg/m3

    E = 195000 Mpa

    Ti = 1.80 seconds

    Convective (Sloshing) Period

    Tc = 1.8 Ks sqrt ( D ) Tc = 2.21 seconds

    Ks = 0.578 / ( sqrt ( ( 3.68 H ) / D ) ) Ks = 0.58

    Design Spectral Response Acceleration T 1.89

    Impulsive spectral acceleration parameter, Ai

    Probabilistic or Mapped Design Method (Approach 1)

    So = 0.112 %g

    N/A SP = 0 %g

    SDS = 2.5 Q Fa So ( E-4 ) N/A SDS = 0.45 %g

    I =1.25 -

    Fa = 1.6 -

    Rwi = 4 -

    Q = 1.00 -

    Ai = SDS ( I / Rwi ) 0.14

    Ai = 2.5 Q Fa So ( I / Rwi ) 0.14

    For Site Class A, B, C and DAi 0.007 Satisfied

    For Site Class E and F Ai 0.5 S1 ( I / Rwi ) N/A N/A

    For Site Class E and F Ai 0.875 SP ( I / Rwi ) N/A N/A

  • 7/27/2019 API650 Tank Design

    26/89

    Ai 0.14000

    Concevtice spectral acceleration parameter, Ac

    Probabilistic or Mapped Design Method (Approach 1)

    S1 = 0.14 %g

    Ss = 0.28 %g

    So = SP So = 0.112 %g

    SD1 = 0 %g

    SP = 0 %g

    K = 1.5 -

    I = 1.25 -

    Fa = 1.6 -

    Fv = 2.4 -

    Tc = 2.21 seconds

    Ts = 0.75 seconds

    TL = 4 seconds

    Rwc = 2 -

    Q = 1.00 -TC < TL

    Ac = KSD1 ( I / Tc ) ( I / Rwc ) Ac N/A

    Ac = 2.5 Q Fa So ( Ts / Tc ) ( I / Rwc ) Ac 0.09508

    TC > TL

    Ac = KSD1 ( TL / Tc2

    ) ( I / Rwc ) Ac N/A

    Ac = 2.5 Q Fa So ( ( Ts TL / Tc2

    ) ( I / Rwc ) Ac 0.17221

    Ac 0.08596 < Ai

    SEISMIC DESIGN FACTORS

  • 7/27/2019 API650 Tank Design

    27/89

    DESIGN FORCES

    Equivalent lateral seismic design force F = A . Weff

    lateral acceleration coefficient A ( %g )

    Effective Weight contributing to seismic response Weff

    DESIGN LOADS

    Ws 89100 N

    Wr 18950 N

    Wf 15530 N

    Wi 1383984 N

    Wc 269710 N

    WP 1639640 N

    Ai 0.1400 %g

    Ac 0.0860 %g

    Vi = Ai ( Ws + Wr + Wf + Wi ) Vi 211059 N

    Vc = Ac Wc Vc 23184 N

    V = SQRT ( Vi2

    + Vc2) V 212329 N

    EFFECTIVE WEIGHT OF PRODUCT

    EFFECTIVE IMPULSIVE WT.

    D 4.51 m

  • 7/27/2019 API650 Tank Design

    28/89

    H 6.30 m

    D/H 0.72 -

    WP 1639640 N

    When D / H greater than or equal to 1.333

    ( tanh ( 0.866 D / H ) / (0.866 D / H ) ) Wp

    Wi 1457810 N

    When D / H less than 1.333

    ( 1 - 0.218 ( D / H ) ) WP

    Wi 1383984 N

    Use Wi =

    EFFECTIVE CONVECTIVE WT.

    D 4.51 m

    H 6.30 m

    D/H 0.72

    WP 1639640 N

    For Convective

    0.23 ( D / H ) tanh ( ( 3.67 H ) / D ) W P

    Wc 269710 N Use Wc =

    CENTER OF ACTION FOR EFFECTIVE LATERAL FORCES

    CENTRE OF ACTION OF RINGWALL OVERTURNING MOMENT

    D 4.51 m

    H 6.30 m

    D/H 0.72 -

    H/D 1.40 -

  • 7/27/2019 API650 Tank Design

    29/89

    When D / H greater than or equal to 1.333

    Xi = 0.375 H

    Xi 1.69 m Not Applicable in this case.

    When D / H less than 1.333

    Xi = ( 0.5 - 0.094 ( D / H ) ) H

    Xi 2.73 m Applicable in this case.

    Use Xi =

    For Convective

    Xc = ( 1.0 - ( COSH ( (3.67 H / D ) -1 ) / ( ( 3.67 H / D ) SINH ( 3.67 H /D ) )

    H H/D 3.67 ( H / D ) .67 ( H / D ) - COSH 4 SINH 3 Xc

    6.3 1.4 5.1 4.1 31.1 84.6 5.85

    Use Xc =

    CENTRE OF ACTION OF SLAB OVERTURNING MOMENT

    D 4.51 m

    H 6.30 m

    D/H 0.72 -

    When D / H greater than or equal to 1.333

    Xis = 0.375 ( 1.0 + 1.333 ( ( ( 0.866 D / H ) / TANH ( 0.866 D / H ) ) -1.0 ) ) H

    D H D / H 0.866 ( D / H ) TANH 4 Xis

    4.51 6.30 0.72 0.62 0.55 2.76

    When D / H less than 1.333

    Xis = ( 0.5 + 0.6 ( D / H ) ) H

    D H D / H 0.6 ( D / H ) Xis

  • 7/27/2019 API650 Tank Design

    30/89

    4.51 6.30 0.72 0.43 5.85

    Use Xis =

    For Convective

    Xcs = ( 1.0 - ( COSH ( ( 3.67 H / D ) -1.937 ) / ( 3.67 ( H / D ) SINH ( 3.67 ( H / D ) ) ) ) H

    D H H / D 3.67 ( H / D ) 3.67 ( H / D ) - 1.937 COSH 5 SINH 3

    4.51 6.30 1.40 5.13 3.19 12.22 84.60

    Use Xcs =

    VERTICAL SEISMIC EFFECTS

    SDS = 0.448

    Av = 0.06272 %g

    Fv = Av Weff Wi = 1383984 N

    Wc = 269710 N

    Weff = 1410020 N

    Fv = 88436 N

    DYNAMIC LIQUID HOOP FORCES

    When D / H is greater than or equal to 1.333

    Ni = 8.48 Ai G D H ( ( Y / H ) - 0.5 ( Y / H )2

    ) TANH ( 0.866 D / H )

    D H D / H 0.866 ( D / H ) TANH 4 Y Y / H

    4.51 6.30 0.72 0.6194 0.5507 6.30 1.000

    When D / H is less than 1.333 and Y is less than 0.75 D

    Ni = 5.22 Ai G D2

    ( ( Y / ( 0.75 D ) ) - 0.5 ( Y / ( 0.75 D ))2

    )

    D Y Y / D Ai G Ni

    4.51 4.00 0.89 0.1400 1.04 7.46

  • 7/27/2019 API650 Tank Design

    31/89

    When D / H is less than 1.333 and Y is greater than or equal to 0.75 D

    Ni = 2.6 Ai G D2

    D Ai G Ni

    4.51 0.1400 1.04 7.69

    For Convective

    Nc = 1.85 Ac G D2 COSH ( 3.68 ( H - Y ) / D ) / COSH (3.68 H / D )

    D H Y 3.68 ( H - Y ) / D 3.68 ( H / D ) COSH 4 COSH 5

    4.51 6.30 6.70 -0.33 5.15 1.0538 85.801

    When purchaser specifies that vertical acceleration need not be considered (i.e. Av = 0), the combined

    stress shall be defined by Equation E-22. The dynamic hoop tensile stress shall be directly combined

    product hydrostatic design stress in determining the total stress.

    When vertical acceleration not specified T = h s = ( Nh SQRT ( Ni2

    + Nc2

    ) ) / t

    h s Nh Ni Nc

    When vertical acceleration specified T = h s = ( Nh ( SQRT ( Ni2

    + Nc2

    + (

    h s Nh Ni Nc

    OVERTURNING MOMENT Mrw = SQRT ( ( Ai ( Wi Xi + Ws Xs + Wr X

  • 7/27/2019 API650 Tank Design

    32/89

    RINGWALL MOMENT Ai 0.14

    Wi 1383984.208

    Xi 2.83

    Ws 89100

    Xs 3.15

    Wr 18950

    Xr 0.167

    Ac 0.08596

    Wc 269709.7481

    Xc 6.1

    Mrw 604837 N-m

    SLAB MOMENT

    Ms = SQRT ( ( Ai ( Wi Xis + Ws Xs + Wr X

    Ai 0.1400

    Wi 1383984.208

    Xis 6.66

    Ws 89100.00

    Xs 3.15

    Wr 18950.00

    Xr 0.167

    Ac 0.0860

    Wc 269710

    Xcs 6.48

    Ms 1338620 N-m

    Anchorage [Resistance to the design overturning (ringwall) moment at the base of the shell]

  • 7/27/2019 API650 Tank Design

    33/89

    Resistance is contributed by:

    For unanchored tanks

    Weight of the tank shell

    Weight of roof reaction on shell

    Weight of a portion of the tank contents adacent to the shell

    For anchored tanks

    Mechanical anchorage devices (i.e., Anchor chair with anchor boldts)

    ta 7.00 mm

    S 0 N

    Av 0.06272 %g

    Anchorage Ratio, J Mrw 604837 N-m

    Ws 55322 N

    J = Mrw / ( D2

    ( W t ( 1 - 0.4 Av ) )+ Wa ) Wss 3908 N/m

    Wr 18953 N

    Wt= ( ( W

    s/ PI() D ) + W

    rs)

    Wrs 1339 N/m

    Wt 5247 N/m

    Wa = 99 ta SQRT ( Fy H Ge ) 1.28 H D Ge Wa 27134 N/m

    27134 37 Ge 1.014 -

    J 0.92

    Annular Plate Requirements Tank is self Anchored.

    Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness

    tank floor plate ( i.e., ta > tb ) with the following restrictions:

    ts - CA 3.00 mm

    Actual Thk. Btm Plt. tb 7.00 mm

  • 7/27/2019 API650 Tank Design

    34/89

    a [Not Satisfied.]

    b [Not Satisfied.]

    Tank Self Anchored?

    a ) The resisting force is adequate for tank stability ( i.e. the anchorage ratio, J > 1.54 )

    b ) The maximum width of annulus for determining the resisting force is 3.5% of the tank diameter.

    c ) The shell compression satisfies E.6.2.2

    d ) The req'd annular plate thickness does not exceed the thickness of the btm shell course.

    e ) Piping flexibility requirements are satisfied.

    Shell Compression in Self-Anchored Tanks

    Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift,

    c = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2

    ) ) ( 1 / ( 1000 ts ) )

    Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift,

    c= ( ( ( wt (1 + 0.4 Av ) + wa ) / ( 0.607 -0.18667 J

    2.3) ) - wa ) ( 1 / ( 1000 ts ) )

    wt 5247 N/m

    Av 0.06272 %g

    Mrw 604837 N-m

    D 4.506 m

    ts 3.00 mm

    wa 27134 N/m

    J 0.92 -

    c 14.960 MPa

    Shell Compression in Mechanically-Anchored Tanks

    Max. longitudinal shell compression stress at the bottom of the shell when there is no ca

  • 7/27/2019 API650 Tank Design

    35/89

    c = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2

    ) ) ( 1 / ( 1000 ts ) )

    wt 5247 N/m

    Av 0.06272 %g

    Mrw 604837 N-m

    D 4.506 m

    ts 3.00 mm

    c 14.433 MPa

    Allowable Longitudinal Membrane Compression Stress in Tank Shell

    G 1.04

    H 6.30

    D 4.506

    ts 3.00 Corroded

    G H D2

    / t2

    14.78

    Fc 8.17 MPa

  • 7/27/2019 API650 Tank Design

    36/89

    Self Anchored Consider

    Mechanically Anchored Do not consider

    Where the site properties are not known in sufficient detail to determine t

    unless the authority having jurisdiction determines that Site Class E or F

    Corroded

    Corroded

    I Not assigned to SUG II and III

    II Hazardous substance, public exposure, direct service to m

    III Post earthquake recovery, life and health of public, hazard

    Note:

    Seismic Use Group (SUG) for the tank shall be specified by the purchase

    If it is not specified, the tank shall be assigned to SUG I

    SUG I A Hard rock

    I 1 B Rock

    II 1.25 C Very dense so

    III 1.5 D Stiff soil

    E Soil

    F N/A

    T = Natural period of vibration of the tank and contents, seconds.

    Ci = Coefficient for determining impulsive period of tank system

    Seismic Use Group

    Importance Factor Site Class

  • 7/27/2019 API650 Tank Design

    37/89

    H = Maximum design product level, m

    tu = Equivalent uniform thickness of tank shell, mm

    D = Nominal tank diameter, m

    p = Mass density of fluid, kg/m3

    E = Elastic Modulus of tank material, MPa

    Ti = Natural period of vibration for impulsive mode of behavior, seconds

    Tc = Natural period of vibration for convective (sloshing) mode of behavior, se

    So = Mapped, maximum considered earthquake, 5-percent-damped, spectral r

    SP = Design level peak ground acceleration parameter for sites not addressed

    SDS = The design, 5-percent-damped, spectral response acceleration paramete

    I =Importance factor coefficient based on seismic use group.

    Fa = Acceleration-based site coefficient ( at 0.2 seconds period ).

    Rwi = Force reduction factor for the impulsive mode using allowable stress desi

    Q = Scaling factor from the MCE to the design level spectral acceleration. Q

  • 7/27/2019 API650 Tank Design

    38/89

    S1 = Mapped, MCE, 5-percent-damped, spectral response acceleration param

    Ss = Mapped, MCE, 5-percent-damped, spectral response acceleration param

    So = Mapped, MCE, 5-percent-damped, spectral response acceleration param

    SD1 = The design, 5-percent-damped, spectral response acceleration paramete

    SP =

    K = Coefficient to adjust the spectral acceleration from 5% to 0.5% damping

    I = Importance factor coefficient based on seismic use group.

    Fa = Acceleration-based site coefficient ( at 0.2 seconds period ). Table E - 1

    Fv = Velocity-based site coefficient ( at 1.0 seconds period ).

    Tc = Natural period of the covective (sloshing) mode of behavior of the liquid,

    Ts = ( Fv . S1 ) / ( Fa . Ss )

    TL = Regional-dependent transition period for longer period ground motion, se

    Rwc = Force reduction coefficient for the convective mode using allowable stres

    Q = Scaling factor from the MCE to the design level spectral acceleration. Q

    0.1400 Satisfied

  • 7/27/2019 API650 Tank Design

    39/89

    Ws Total weight of tank shell and appurtenances, N.

    Wr Total weight of fixed tank roof including framing, knuckles, any permanen

    Wf Weight of the tank floor, N.

    Wi Effective impulsive weight of the liquid, N.

    Wc Effective convective (sloshing) portion of the liquid weight, N.

    WP Total weight of the tank contents based on the design specific gravity of t

    Ai Impulsive design response spectrum acceleration coefficient, %g.

    Ac Convective design response spectrum acceleration coefficient %g.

    Vi Design base shear due to impulsive component from effective weight of t

    Vc Design base shear due to the convective component of the effective slos

    V Total design base shear, N.

  • 7/27/2019 API650 Tank Design

    40/89

    1383984 N

    269710 N

  • 7/27/2019 API650 Tank Design

    41/89

    2.83 m

    6.10 m

  • 7/27/2019 API650 Tank Design

    42/89

    6.66 m

    Xcs

    6.12

    6.48 m

    Av = Vertical earthquake acceleration coefficient, %g. Av = 0.14 SDS

    Wi = Effective weight contributing to seismic response. SDS = 2.5 Q F

    Wc = Velocity-based site coefficient ( at 1.0 seconds period ).

    Y = Distance from liquid surface to analysis point, (positive down), m.

    Ni = Impulsive hoop membrane force in tank wall, N/mm.

    0.5 ( Y / H ) Ai G Ni

    0.500 0.1400 1.04 9.65

    D / H 0.72

    Y 6.70

    Use '2 & 3'

  • 7/27/2019 API650 Tank Design

    43/89

    1 9.61 N/mm

    2 & 3 7.69 N/mm

    1, 2 & 3 7.69 N/mm

    Use Ni = 7.69 N/mm

    Use Nc = 0.04 N/mm

    Ac G Nc

    0.0860 1.04 0.04

    hoop

    ith the

    t T h Product hydrostatic hoop stress in the shell,

    s Hoop stress in the shell due to impulsive an

    T Total combined hoop stress in te shell, MPa

    Nh Product hydrostatice membrane force, N/m

    Ni Impulsive hoop membrane force in tank wal

    Nc Convective hoop membrane force in tank w

    c Nh

    )2

    ) ) ) / t t Thickness of the shell ring under considerati

    Av Vertical earthquake acceleration coefficient,

    Av t T

    r ) )2

    + ( Ac ( Wc Xc ) )2

    )

  • 7/27/2019 API650 Tank Design

    44/89

    ) )2

    + ( Ac ( Wc Xcs ) )2

    )

  • 7/27/2019 API650 Tank Design

    45/89

    ta Thickness of the bottom plate under the shell extending at least the dista

    S Design snow load, N.

    Av Vertical earthquake acceleration coefficient, %g.

    Mrw Ringwall moment - Portion of the total overturning moment that acts at th

    Ws Total weight of tank shell and appurtenances, N. (Shell + Btm Plt + Curb

    Wss Total weight of tank shell and appurtenances per unit length of shell circu

    Wr Total weight of fixed tank roof including framing, knuckles, any permanen

    Wrs Roof load acting on the shell, including 10% of the specified snow load, N

    Wt Tank and roof weight acting at base of shell, N/m.

    Wa Resisting force of tank contents per unit length of shell circumference tha

    Ge Effective specific gravity including vertical seismic effects = G ( 1.0 - 0.4

    J < 0.785 No calculated uplift under the design seismic overturning

    0.785 < J < 1. Tank is uplifting, but the tak is stable for the design load pr

    J >1.54 Tank is not stable and cannot be self-anchored for the desi

    of the general

  • 7/27/2019 API650 Tank Design

    46/89

    a ) The thickness, ta, used to calculate wa in Equ E-23 shall not exceed t

    b ) Nor shall the thickness, ta, used in Equ E-23 exceed the actual thickn

    c ) when the bottom plate under the shell is thicker than the remainder of

    thicker annular plate inside the tank wall, Ls, shall be equal to or great

    [Satisfied]

    L = 158 mm

    [Not Satisfiend]

    [Not Satisfied]

    See API 650 Sec. E.7.3

    < 0.785, c

    > 0.785, c

    J < 0.785 Long. Shell Comp. Stress = 14.43 MPa

    J > 0.785 Long. Shell Comp. Stress = 14.96 MPa

    lculated uplift, J < 0.785, c

  • 7/27/2019 API650 Tank Design

    47/89

    Thickness of the shell ring under consideration, mm. corroded

    Allowable longitudinal shell membrane compression stress, MPa.

    G H D2

    / t2

    44 Fc = 55.26 M Fc = 83 ts / D

    G H D2

    / t2

    < 44 Fc = 8.17 MP Fc = 83 ts / ( ( 2.5 D ) + 7.5 SQRT ( G H ) )

    G H < 0.5 Fty 28.3878 120 Satisfied

  • 7/27/2019 API650 Tank Design

    48/89

    e site class, Site Class D shall be assumed

    hould apply at the site.

    ajor facilities

    us substance

    r.

    il

  • 7/27/2019 API650 Tank Design

    49/89

    onds

    esponse acceleration parameter at a period of one second, %g.

    by ASCE methods.

    r at short periods ( T = 0.2 seconds ) based on ASCE 7 methods, %g.

    n methods.

    2 / 3 for ASCE 7 and Q = 1 UOS.

  • 7/27/2019 API650 Tank Design

    50/89

    eter at a period of one second, %g.

    eter at short periods ( T = 0.2 seconds ), %g.

    eter at a period of one second, %g.

    r at one second based on ASCE 7 methods, %g.

    1.5 UOS.

    econds.

    onds. For ASCE 7 Mapped value and for Outside USA 4.

    design methods.

    2 / 3 for ASCE 7 and Q = 1 UOS.

  • 7/27/2019 API650 Tank Design

    51/89

    attachments and 10% of the roof design snow load, N.

    e product, N.

    nk and contents, N.

    ing wieght, N.

  • 7/27/2019 API650 Tank Design

    52/89

  • 7/27/2019 API650 Tank Design

    53/89

  • 7/27/2019 API650 Tank Design

    54/89

    So

  • 7/27/2019 API650 Tank Design

    55/89

    MPa.

    convective force of the stored liquid, MPa..

    .

    l, N/mm.

    ll, N/mm.

    ion, mm.

    %g.

  • 7/27/2019 API650 Tank Design

    56/89

  • 7/27/2019 API650 Tank Design

    57/89

    ce, L, from the inside of the shell, less CA, mm.

    base of the tank shell perimeter, N-m.

    ngle + Rings )

    ference, N/mm.

    attachments and 10% of the roof design snow load, N.

    /m.

    may be used to resist the shell overturning moment, N/m.

    v )

    oment. The tank is self anchored.

    oviding the shell compression requirements are satisfied. Tank is self anchored.

    ign load. Modify the annular plate if L < 0.035D is not controlling or add mechanical anchorage.

  • 7/27/2019 API650 Tank Design

    58/89

    e first shell course thickness, ts, less the shell CA.

    ss of the plate under the shell less the CA for tank bottom.

    the tank bottom (i.e. ta > tb) the min. projection of the supplied

    r than L:

  • 7/27/2019 API650 Tank Design

    59/89

  • 7/27/2019 API650 Tank Design

    60/89

  • 7/27/2019 API650 Tank Design

    61/89

  • 7/27/2019 API650 Tank Design

    62/89

  • 7/27/2019 API650 Tank Design

    63/89

    F.1 Scope

    F.1.1 This appendix applies to the storage of nonrefrigerated liquids.

    F.1.2 When net uplift does not exceed the nominal weight of the shell, roof and

    F.1.3 Internal Pressure exceed 18 kPa gauge covered in F.7.

    F.1.4

    F.1.5 Tank nameplate shall indicate whether the tank has been designed in ac

    F.1.6 Figure F-1 provided to aid in the determination of the applicability of vario

    F.2 Venting (Deleted)

    F.3 Roof Details

    F.4 Maximum Design Pressure and Test Procedure

    F.4.1 The design pressure, P, for a tank that has been constructed or that has

    may be calculated from the following equation (subjected to the limitation

    P = ( 1.1 ) ( A ) ( tan ) / D2

    + 0.08th

    P Internal design pressure, kPa

    A Area resisting the compressive force, as illustrated in Figu

    Angle between the roof and a horizontal plane at the roof-t

    tan Slope of the roof, expressed as a decimal quantity

    D Tank diameter, m

    th Nominal roof thickness, mm

    F.4.2 The maximum design pressure, limited by uplift at the base of the shell, s

    from the following equation unlesss further limited by F.4.3

    Pmax Maximum design pressure, kPa

    DLS Total weight of the shell and any framing (but not roof plate

    D Tank diameter, m

    th Nominal roof thickness, mm

  • 7/27/2019 API650 Tank Design

    64/89

    M Wind moment, N - m

    F.4.3 As top angle size and roof slope decrease and tank diameter increases, t

    approaches the failure pressure of F.6 for the roof-to-shell junction, In ord

    operating pressure and the calculated failure pressure, a suggested furth

    tanks with a weak rof-to-shell attachment (frangible joint) is:

    Pmax < 0.8 Pf

    F.4.4 When the entire tank is completed, it shall be filled with water to the top a

    internal air pressure shall be applied to the enclosed space above the wa

    shall then be reduced to one-half the design pressure, and all welded join

    by means of a soap film, linseed oil, or another suitable material. Tank ve

    F.5 Required Compression Area at the Roof-to-Shell Junction

    F.5.1 A = ( D2

    ( Pi - 0.08th ) ) / ( 1.1 ( tan ) )

    A = ( D2

    ( 0.4Pi - 0.08th + 0.72 ( V / 120 )2

    ) ) / ( 1.1 ( tan ) )

    A Total required compression area at the roof-to-shell junctio

    D Tank diameter

    Pi Design internal pressure, kPa

    th Roof Thickness, mm

    V Design wind speed ( 3-second gust ), km / h

    F.5.2 For self-supporting roofs, the compression area shall not be less than the

    F.6 Calculate Failure Pressure ( Frangible Roofs )

    a

    b

    c

  • 7/27/2019 API650 Tank Design

    65/89

    d

    e

    f

    g

    h

    Pf = 1.6P - 0.047th

    F.7 Anchored Tanks with Design Pressures up to 18 kPa Gauge

    F.7.1 Shell Design Modification

    F.7.2 Compression Area

    F.7.3 Roof Design

    F.7.4 Anchorage

    Column 1 Column 2 Column 3

    Manhole Dia Bolt Circle Dia Cover Plate Diameter

    mm (in.) Db mm (in.) Dc mm (in.)

    Bolt Circle Dia 656 (261/4) 720 (283/4)

    Db mm (in.) 756 (301/4) 820 (323/4)

    Cover Plate D 906 (361/4) 970 (383/4)

    Dc mm (in.) 1056 (421/4) 1120 (443/4)

  • 7/27/2019 API650 Tank Design

    66/89

    MPa MPa

    FY min FT min 40 90

    304 205 515 155 155

    304L 170 485 145 132

    316 205 515 155 155

    316L 170 485 145 131

    317 205 515 155 155

    317L 205 515 155 155

    2

    Temp 120

    th R2 Wh

    0.39 9800.17 37.27

    10 248924 947

    Rc tc Wc

    Type

    T

    Allowable Stress

    Not

    Minimum

    Yield

    Strength

    Minimum

    Tensile

    Strength

  • 7/27/2019 API650 Tank Design

    67/89

    610.24 0.55 11.00

    15500 14 279

  • 7/27/2019 API650 Tank Design

    68/89

    Leg 1 Leg 2 Thk

    L1 L2 t

    mm mm mm

    20 x 20 x 2 20 20 2

    20 x 20 x 2.5 20 20 2.5

    20 x 20 x 3 20 20 3

    25 x 25 x 2.5 25 25 2.5

    25 x 25 x 3 25 25 3

    25 x 25 x 4 25 25 4

    30 x 30 x 2.5 30 30 2.5

    30 x 30 x 2.7 30 30 2.7

    30 x 30 x 3 30 30 3

    30 x 30 x 4 30 30 4

    30 x 30 x 5 30 30 5

    35 x 35 x 2.5 35 35 2.5

    35 x 35 x 3 35 35 3

    35 x 35 x 3.2 35 35 3.2

    35 x 35 x 3.5 35 35 3.2

    35 x 35 x 4 35 35 4

    35 x 35 x 5 35 35 5

    37 x 37 x 3.3 37 37 3.3

    40 x 40 x 3 40 40 3

    40 x 40 x 4 40 40 4

    40 x 40 x 5 40 40 5

    40 x 40 x 6 40 40 6

    45 x 45 x 3 45 45 3

    45 x 45 x 4 4 4 4

    45 x 45 x 4.5 4.5 4.5 4.5

    45 x 45 x 5 5 5 5

  • 7/27/2019 API650 Tank Design

    69/89

    45 x 45 x 6 6 6 6

    50 x 50 x 3 50 50 3

    50 x 50 x 4 50 50 4

    50 x 50 x 4.5 50 50 4.5

    50 x 50 x 5 50 50 5

    50 x 50 x 6 50 50 6

    50 x 50 x 7 50 50 7

    50 x 50 x 8 50 50 8

    60 x 60 x 4 60 60 4

    60 x 60 x 4.5 60 60 4.5

    60 x 60 x 5 60 60 5

    60 x 60 x 5.5 60 60 5.5

    60 x 60 x 6 60 60 6

    60 x 60 x 8 60 60 8

    60 x 60 x 10 60 60 10

    70 x 70 x 5 70 70 5

    70 x 70 x 5.5 70 70 5.5

    70 x 70 x 6 70 70 6

    70 x 70 x 6.5 70 70 6.5

    70 x 70 x 7 70 70 7

    70 x 70 x 9 70 70 9

    80 x 80 x 5.5 80 80 5.5

    80 x 80 x 6 80 80 6

    80 x 80 x 7 80 80 7

    80 x 80 x 7.5 80 80 7.5

    80 x 80 x 8 80 80 8

    80 x 80 x 10 80 80 10

    90 x 90 x 6.5 90 90 6.5

    90 x 90 x 7 90 90 7

    90 x 90 x 8 90 90 8

    90 x 90 x 8.5 90 90 8.5

    90 x 90 x 9 90 90 9

    6.5 100 100 6.5

  • 7/27/2019 API650 Tank Design

    70/89

    100 x 100 x 7 100 100 7

    100 x 100 x 8 100 100 8

    100 x 100 x 9 100 100 9

    10 100 100 10

    12 100 100 12

    120 x 120 x 8 120 120 8

    10 120 120 10

    11 120 120 11

    12 120 120 12

    14 120 120 14

    15 120 120 15

    10 150 150 10

    12 150 150 12

    12.5 150 150 12.5

    14 150 150 14

    15 150 150 15

    18 150 150 18

    18 180 180 18

    16 200 200 16

    18 200 200 18

    20 200 200 20

    24 200 200 24

    25 200 200 25

    26 200 200 26

  • 7/27/2019 API650 Tank Design

    71/89

    framing supported b the shell or roof F.2 through F.6.

    Internal Pressure

    Pressure Force

    ordance with F.1.2 Wt. of roof plates

    s sections of this appendix. Wt. of shell, roof and attache

    ad its design details established

    of Pmax in F.4.2)

    10.89 kPa

    e F-2, mm2

    776.47 mm2

    -shell junction, degrees 14 degrees

    0.249 -

    4.506 m

    5 mm

    hall not exceed the value calculated

    -0.66 kPa

    s) supported by the shell and roof, N 14769.83 N

    4.506 m

    5.00 mm

  • 7/27/2019 API650 Tank Design

    72/89

    42734.81 N-m

    he design presure permitted by F.4.1 and F.4.2

    er to provide a safe margin between the maximum

    r limitation on the maximum design pressure for

    -1.03 kPa

    ngle or the design liquid level, and the design

    er level and held for 15 minutes. The air pressure

    s above the liquid level shall be checked for leaks

    nts shall be tested during or after this test.

    340.55 mm2

    188.94 mm2

    n, mm2

    4.506 mm

    5.00 kPa

    5 mm Corroded

    138 km / h

    14 Degrees

    cross-sectional area calculated in 3.10.5 and 3.10.6

  • 7/27/2019 API650 Tank Design

    73/89

    -1.29 kPa

  • 7/27/2019 API650 Tank Design

    74/89

    150 200 260 Ambient

    140 128 121 186 Table S-2 --- Allowable Stress for T

    119 109 101 155

    145 133 123 186

    117 107 99 155

    145 133 123 186

    145 133 123 186

    C

    t L Wh + L + ts A

    3.74 59.84 97.11 363.21 947

    95 1520 2467 234330.80

    ts

    Hydrostatic

    Test Stress

    (St)

    MPamperature Range

    pr Maximum Design Temperature

    Exceeding (Sd), MPa

  • 7/27/2019 API650 Tank Design

    75/89

    3.74 41.16

    95 26552.46

    Sum 404.37

    260883.2534

    Wt./m 2047.933539

    Wt. 199446.9618

  • 7/27/2019 API650 Tank Design

    76/89

    20L2 1 #REF! #REF! #REF!

    20L2.5 2 #REF! #REF! #REF!

    20L3 3 #REF! #REF! #REF!

    25L2.5 4 #REF! #REF! #REF!

    25lL3 5 #REF! #REF! #REF!

    25L4 6 #REF! #REF! #REF!

    30L2.5 7 #REF! #REF! #REF!

    30L2.7 8 #REF! #REF! #REF!

    30L3 9 #REF! #REF! #REF!

    30L4 10 #REF! #REF! #REF!

    30L4 11 #REF! #REF! #REF!

    35L2.5 12 #REF! #REF! #REF!

    35L3 13 #REF! #REF! #REF!

    35L3.2 14 #REF! #REF! #REF!

    35L3.5 15 #REF! #REF! #REF!

    35L4 16 #REF! #REF! #REF!

    35L5 17 #REF! #REF! #REF!

    37L3.3 18 #REF! #REF! #REF!

    40L3 19 #REF! #REF! #REF!

    40L4 20 #REF! #REF! #REF!

    40L5 21 #REF! #REF! #REF!

    40L6 22 #REF! #REF! #REF!

    45L3 23 #REF! #REF! #REF!

    45L4 24 #REF! #REF! #REF!

    45L4.5 25 #REF! #REF! #REF!

    45L5 26 #REF! #REF! #REF!

  • 7/27/2019 API650 Tank Design

    77/89

    45L6 27 #REF! #REF! #REF!

    50L3 28 #REF! #REF! #REF!

    50L4 29 #REF! #REF! #REF!

    50L4.5 30 #REF! #REF! #REF!

    50L5 31 #REF! #REF! #REF!

    50L6 32 #REF! #REF! #REF!

    50L7 33 #REF! #REF! #REF!

    50L8 34 #REF! #REF! #REF!

    60L4 35 #REF! #REF! #REF!

    60L4.5 36 #REF! #REF! #REF!

    60L5 37 #REF! #REF! #REF!

    60L5.5 38 #REF! #REF! #REF!

    60L6 39 #REF! #REF! #REF!

    60L8 40 #REF! #REF! #REF!

    60L10 41 #REF! #REF! #REF!

    70L5 42 #REF! #REF! #REF!

    70L5.5 43 #REF! #REF! #REF!

    70L6 44 #REF! #REF! #REF!

    70L6.5 45 #REF! #REF! #REF!

    70L7 46 #REF! #REF! #REF!

    70L9 47 #REF! #REF! #REF!

    80L5.5 48 #REF! #REF! #REF!

    80L6 49 #REF! #REF! #REF!

    80L7 50 #REF! #REF! #REF!

    80L7.5 51 #REF! #REF! #REF!

    80L8 52 #REF! #REF! #REF!

    80L10 53 #REF! #REF! #REF!

    90L6.5 54 #REF! #REF! #REF!

    90L7 55 #REF! #REF! #REF!

    90L8 56 #REF! #REF! #REF!

    90L8.5 57 #REF! #REF! #REF!

    90L9 58 #REF! #REF! #REF!

    10L6.5 59 #REF! #REF! #REF!

  • 7/27/2019 API650 Tank Design

    78/89

    100L7 60 #REF! #REF! #REF!

    100L8 61 #REF! #REF! #REF!

    100L9 62 #REF! #REF! #REF!

    100L10 63 #REF! #REF! #REF!

    100L12 64 #REF! #REF! #REF!

    120L8 65 #REF! #REF! #REF!

    120L10 66 #REF! #REF! #REF!

    120L11 67 #REF! #REF! #REF!

    120L12 68 #REF! #REF! #REF!

    120L14 69 #REF! #REF! #REF!

    120L15 70 #REF! #REF! #REF!

    150L10 71 #REF! #REF! #REF!

    150L12 72 #REF! #REF! #REF!

    150L12.5 73 #REF! #REF! #REF!

    150L14 74 #REF! #REF! #REF!

    150L15 75 #REF! #REF! #REF!

    150L18 76 #REF! #REF! #REF!

    180L18 77 #REF! #REF! #REF!

    200L16 78 #REF! #REF! #REF!

    200L18 79 #REF! #REF! #REF!

    200L20 80 #REF! #REF! #REF!

    200L24 81 #REF! #REF! #REF!

    200L25 82 #REF! #REF! #REF!

    200L26 83 #REF! #REF! #REF!

  • 7/27/2019 API650 Tank Design

    79/89

    Pi = 5.00 kPa -

    PForce = 79.52 kN

    Wroof plates = 6.54 kN

    d framing WTotal = 36.11 kN

    -

    -

    No

    Use API 620

    -

    Does internal pressure

    exceed weight of roof

    plates?

    Does tank have internalpressure?

    Yes

    Does internal pressure

    exceed 18 kPa?

    Yes

    Yes

    Does internal pressure

    exceed the weight of the

    shell, roof and attached

    framing?

    Provide anchors and

    conform to F.7.

  • 7/27/2019 API650 Tank Design

    80/89

  • 7/27/2019 API650 Tank Design

    81/89

    A roof is considered frangible if the roof-to-shell jwill fail prior to the shell-to-bottom joint in the eveexcessive internal pressure.

    Frangible Roof Conditionsa. The tank shall be 15.25 m (50 ft)diameter or greater.b. The slope of the roof at the top angleattachment does not exceed 2 in 12.c. The roof is attached to the top anglewith a single continuours fillet weld thatdoes not exceed 5 mm (3/16 in.).d. The roof support members shall notattached to the roof plate.e. The roof-to-top angle compression rilimited to details a - e in Figure F-2.f. The top angle may be smaller than th

    required by 3.1.5.9.e.g. All members in the region of the roof-shell junction, including insulation ringsconsidered as contributing to the cross-sectional area (A).h. The cross sectional area (A) of the roto-shell junction is less than the limitshown below:A = W / ( 1390 tan Theta )

  • 7/27/2019 API650 Tank Design

    82/89

    nk Shells

  • 7/27/2019 API650 Tank Design

    83/89

  • 7/27/2019 API650 Tank Design

    84/89

  • 7/27/2019 API650 Tank Design

    85/89

  • 7/27/2019 API650 Tank Design

    86/89

  • 7/27/2019 API650 Tank Design

    87/89

    Basic Design

    Basic Design

    API 650 with Appendix F or

    API 620 shall be used

    Basic Design plus Appendix F.1 through F.6.

    Anchors for pressure not required.

    Do not exceed Pmax.

    Limit roof/shell compression area per F.5.

  • 7/27/2019 API650 Tank Design

    88/89

  • 7/27/2019 API650 Tank Design

    89/89

    intnt of

    e

    g

    at

    to-

    of-