08 Stresstrans Print

download 08 Stresstrans Print

of 41

Transcript of 08 Stresstrans Print

  • 7/28/2019 08 Stresstrans Print

    1/41

    . . . . . .

    Lecture : Analysis of stress (I) stress transformation

    Yubao Zhen

    Oct ,

    () Lecture : Analysis o f stress ( I) stress t ransformation

    Oct , /

  • 7/28/2019 08 Stresstrans Print

    2/41

    . . . . . .

    Review: Angle of twist and statically indeterminate problems

    Angle of twist

    general: = L

    T(x)GIp(x)dxprismatic (single): =

    TL

    GIpGIp : torsional rigidity

    prismatic (multiple): =n

    i=

    TiLi

    GiIpi

    Torque diagram: construction; sign convention; jumps and ext. loads

    statically indeterminate torsion problems

    . compatibility + torque-displacement+ equilibrium.

    . the force method.

    torsion with non-circular cross-section warping

    shear flow; average shear stress on thin walled tubes [optional]

    f= avgt=T

    Am, avg =

    T

    tAm

    () Lecture : Analysis o f stress ( I) stress t ransformation

    Oct , /

  • 7/28/2019 08 Stresstrans Print

    3/41

    . . . . . .

    Outline

    . Plane stress state ()

    characteristics; transformation equations; signs

    . Principal stresses ()

    definition; characteristics; procedures

    . Maximum shear stresses ()

    in-plane / out-of-plane (/); physical sense; relation to principal stressstate

    () Lecture : Analysis o f stress ( I) stress t ransformation

    Oct , /

  • 7/28/2019 08 Stresstrans Print

    4/41

    . . . . . .

    Review of the D stress state

    IMPORTANT: stress state is physical and objective ()

    can only be observed through its components in a certain coordinate system

    the general d stress state

    . notation of stress components a. normal

    stresses: d (d= x,y, z)

    b. shear stresses: dd (d, d = x,y, z)

    d: plane normal (orientation);d: acting direction

    . sign convention of stress components

    ()

    judge by the physical loading(++,) positive(+,+) negative() Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    5/41

    . . . . . .

    Understanding stress state in a full scope

    A A A

    A

    A

    A

    ob

    server

    (coo

    rd.sys.)

    orientation (relative)

    differential element

    stress components in different coord. sys. reflect the same objective state() Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    6/41

    . Plane Stress State

    ()

    . . . . . .

  • 7/28/2019 08 Stresstrans Print

    7/41

    . . . . . .

    The D stress state in a stress element ()

    z= zx = zy=

    y

    x

    z

    O

    ys

    ys

    xsxs

    t

    yx

    tyx

    txytxy

    Plane stress () (d view)

    (b)

    y

    xO

    ys

    ys

    xs

    xs

    tyx

    tyx

    txy

    txy

    (d view)

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    8/41

    . . . . . .

    Engineering cases

    engineering cases of plane stress

    . skin () of any ( D ) stressed body (loading free)

    . thin plates (shells, membranes, ...) ( D )

    . rods ( D ) with special loading styles:

    tension/compression; torsion; bending;

    . ...

    the reason to study D state

    .

    all previous formulas deal with only in D and on cross-sections. material failure ()maximum stress level (normal/shear). max. on inclined sections ()

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    9/41

    . . . . . .

    Features of plane stress state

    characteristics:

    .

    all non-zero stresses are in a single plane. non-coplanar planes are needed to specify a unique state

    General D case: x, y, xy Recall: xyacts on four sides

    all possible cases:

    uniaxial tension/compression

    pure shear (). e.g. torsion

    + torsion + uniaxial load

    x + y D stretching

    e.g. tubular pressure tank

    x + y+ general

    x

    y

    xy

    x

    y

    general D stress state

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    10/41

    . . . . . .

    Plane stress state at a point

    *** The same state of stress ***

    [,

    )

    x

    y

    xy

    x

    y

    xoy(unprimed)

    (knowns: x, y, xy)

    x

    y

    x

    y

    y

    x

    x

    oy

    (primed)

    (unknowns: x , y , xy )

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    11/41

    . . . . . .

    Stress components on an arbitrary section

    x

    y

    xy

    x

    y

    x

    y

    x

    y

    face

    face

    +

    2

    for x

    -face

    the procedure

    . set cuts

    . draw FBD

    . apply eqns. of equil.

    fory

    -face

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    12/41

    . . . . . .

    A step-by-step derivation

    Assuming unit length along the zdirection of the wedge (),

    x

    x

    y

    xyA sin

    yA sin

    xA cos

    xyA cos

    x

    A

    xyA

    FBD

    Fx = x

    A

    (xyA sin

    )cos

    (xyA cos

    )sin

    (yA sin ) sin (xA cos ) cos =

    Fy = x

    y

    A + (xyA sin ) sin (xyA cos ) cos (yA sin ) cos +

    (xA cos

    )sin =

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    13/41

    . . . . . .

    Transformation equations for plane stress

    {x

    = x cos+ ysin

    + xy

    (sin cos

    )xy = (y x) sin cos + xy(cos sin )the trigonometric identities ():

    cos =

    ( + cos

    ), sin =

    ( cos

    ), sin cos =

    sin

    results: for an inclined section x

    (angle from xto x

    ):

    x =

    x + y

    +

    x y

    cos+ xysin

    xy =

    x y

    sin+ xycos

    Transformation equations for plane stress

    ()

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    14/41

    . . . . . .

    The matrix () form

    An easier form to memorize

    x

    xy

    =

    x + y

    + cos sin

    sin cos

    x y

    xy

    Determinant () of the matrix = angle involved: always

    leading term(): average ofx, y for normal; zero for shear

    A special case:

    ifx = y= x

    = + xysin, xy = xycos

    further,

    ifxy= x = , xy = (hydrostatic state,)

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    15/41

    . . . . . .

    Special cases of plane stress. Uniaxial stress state ()

    x , y= , xy=

    x =

    x

    ( + cos), xy = x sin

    . Pure shear ()

    x = , y= , xy

    x = xysin, xy = xycos

    . Biaxial stress state ()

    x , y , xy=

    x =

    x + y

    +

    x y

    cos

    xy =

    x y

    sin

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    16/41

    . . . . . .

    The missing components: stresses on plane y

    x

    y

    x

    y

    y

    x

    Apply (+ )stresses at planey

    cos sin

    sin cos

    cos sin

    sin cos

    y =x + y

    x y

    cos xysin

    y?= +

    x y

    sin xycos= xy !!!

    whats wrong with the shear stress?

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    17/41

    . . . . . .

    Sense of shear stress and the local coordinate system

    x

    x

    y

    x

    x

    y

    y

    x

    + 2

    positiv

    epos

    itive

    +

    2

    physical

    positive directions for shear in

    and

    system are opposite

    No wonder!

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    18/41

    . . . . . .

    The first invariant of stress tensor

    Recall

    x =

    x + y

    +

    x y

    cos+ xysin

    y =

    x + y

    x y

    cos xysin

    Observations: x + y = x + y

    generalization:

    I = x + y+ z is independent of coordinate system

    sum of the diagonal elements in stress matrix the st invariant of stress tensor

    ()

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    19/41

    . . . . . .

    Remarks

    . applicable to any plane stress state, regardless of materials

    . general plane stress =pure shear + biaxial stress

    . periodic function of inclined angle (

    / period of)

    (originally) [, ), values repeat at + ( face of an element). isconfined to a domain extent of. e.g. [, ), [

    ,

    )

    each inclined section (orientation) has its

    OWN local coordinate system for transformation

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    E l

  • 7/28/2019 08 Stresstrans Print

    20/41

    . . . . . .

    Example -, page Given: Plane stress state as shown.

    Solve: state of stress with an element oriented clockwise

    y

    xO

    12 MPa

    46 MPa

    19 MPa

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    E l ( )

  • 7/28/2019 08 Stresstrans Print

    21/41

    . . . . . .

    Example -, page (cont.)

    Solution:y

    xO

    12 MPa

    46 MPa

    19 MPa

    read from fig.:

    x = MPa,

    y= MPa,

    xy= MPa

    y

    xO

    1.4 MPa

    32.6 MPa

    31.0 MPa

    y1

    x1

    u= 15

    substitute = into the formula

    x =x + y

    +x y

    cos+ xysin= . MPa

    xy=

    x y

    sin+ xycos= . MPa

    Similarly, for plane = : x = . MPa, xy = . MPa

    check: for = , y

    = x + y x = (.) = . MPa() Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    22/41

    . Principal Stresses ()

    . . . . . .

    M i / i i i l l t

  • 7/28/2019 08 Stresstrans Print

    23/41

    . . . . . .

    Maximum/minimum in-plane normal stress

    Local extrema off(x): dfdx

    = .

    dx

    d=

    x

    y (sin) + xycos=

    Extrema occur at p where

    tanp =xy

    x

    y

    , x y

    Observations:. ifx = y= xycos=

    . ifxy= hydrostatic. max/mininplane

    (

    )=

    .

    ifxy

    =

    ,

    max/mininplane=

    xy

    . further, if = (pure shear), =

    ,

    , max/min

    inplane= xy

    . ifxy= but x y (biaxial stress state) sin=

    = ,

    / identifying x, y themselves as max/min.

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Maximum/minimum in plane normal stress (continued)

  • 7/28/2019 08 Stresstrans Print

    24/41

    . . . . . .

    Maximum/minimum in-plane normal stress (continued)

    tanp =xy

    x y, x y

    . Two roots: p , p .

    . p and p are apart p and p are

    apart.

    . For p, one is in

    [,

    ]; the other is in

    [

    ,

    ).

    .

    The extrema of normal stresses occur on two mutually perpendicular planes

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Correspondence between and

  • 7/28/2019 08 Stresstrans Print

    25/41

    . . . . . .

    Correspondence between p , p and max/mintanp =

    xy

    x y, x y

    set set sinp xy/R xy/Rcosp x y

    /R x y

    /R

    where R =x y + xy. Checking againstd

    x

    d=

    x y

    (cos) xysin; d

    x

    d(set ) < ; d

    x

    d(set ) >

    Conclusions:

    maxinplane

    pwhere sinp = xy/R and cosp =

    x y

    /R simultaneously.

    mininplane

    p= p

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Principal stresses and principal planes

  • 7/28/2019 08 Stresstrans Print

    26/41

    . . . . . .

    Principal stresses and principal planesSubstituting p and p into

    x

    =x + y

    +

    x y

    cos+ xysin

    xy = x y

    sin+ xycos

    . The max/min for in-plane normal stress

    , =x + y

    x y

    + xy, ( , algebraically)

    =x + y

    R , in-plane principal stresses

    p, p : principal orientations/angles/planes (/)

    . xy p = (direct substitution). Or, by: dxd p = xydx

    d

    p= xy = . principal planes are shear free

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Procedure for finding principal stresses and orientations

  • 7/28/2019 08 Stresstrans Print

    27/41

    . . . . . .

    Procedure for finding principal stresses and orientations

    Way-: the direct way

    . evaluate R =x y

    + xy, then , = x + y

    R;

    . determine the unique angle

    (p

    )in

    [,

    )that satisfies SIMULTANEOUSLY

    cosp =x y

    R , sinp =

    xy

    R

    This p corresponds to .

    (Remark: one should understand why this is valid.)

    . find p by plus/minus

    to p : p = p

    This p corresponds to .

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    An alternative way way-

  • 7/28/2019 08 Stresstrans Print

    28/41

    . . . . . .

    An alternative way way-

    . evaluate , as in the previous method (R first, then ,);

    . solve two ps from tanp formula.no association between p, and , yet;

    . pick one p, substitute backinto formula for x for matching;

    . adjust the convention ofp, to make angle-principals correspondence

    . Possible mistakes:

    wrong formula: anything other than tanp =xy

    x y

    (sign, numerator/denominator, etc.) mistakenly calculated ps from tanp or wrong units

    correct ps, but no back-substitution for association:p , p .

    caution: dont simply choose one randomly.

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Comparison between the two methods

  • 7/28/2019 08 Stresstrans Print

    29/41

    . . . . . .

    Comparison between the two methods

    Way-: the direct way (to get p by two criteria)

    . needs two calculations on p ;

    . faster

    Way-: the trial-and-error way (to get p

    by tanp formula)

    . testing on two values;

    . post-adjusting on convention ;

    . slower;

    . more traditional (less to memorize)

    can use both to double checkagainst each other

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Example - page (first part)

  • 7/28/2019 08 Stresstrans Print

    30/41

    . . . . . .

    Example , page (first part)

    Given: plane stress state with x = MPa, y= MPa, xy= MPa

    Solve: principal stresses and its sketch

    x

    y

    84 MPa

    32 MPa

    30 MPa

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Example -, page (first part, in a different way)

  • 7/28/2019 08 Stresstrans Print

    31/41

    . . . . . .

    Example , page (first part, in a different way)Solution:

    x

    y

    84 MPa

    32 MPa

    30 MPa

    p1 = 14.7

    1 = 92.4 MPa

    2 = 38.4 MPa

    principal stresses

    . R =x y + xy= . MPa;, =

    x + y

    R = . MPa

    = . MPa, = . MPa

    . Determine p :

    cosp =x y

    R= .,

    sinp =xy

    R= .

    For p

    [, ),p = arcsin(.) = . rad,p

    = . rad = .;

    . Hence p = p + = . (or .)

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

  • 7/28/2019 08 Stresstrans Print

    32/41

    . Max. Shear Stresses

    ()

    . . . . . .

    Derivation for maximum in-plane shear stress

  • 7/28/2019 08 Stresstrans Print

    33/41

    . . . . . .

    pSimilarly, for maximum shear stresses and the acting planes

    dxy

    d= (x y)(cos ) xysin=

    Extrema occur at s where

    tans = x y

    xy, xy

    observation:. Two roots: s , s they are

    apart.

    One in [, ]; the other in [

    , ).

    . p and s are related by

    tans =

    tanp= cotp = tan(p )

    s p =

    s = p

    planes of max. shear occur at to the principal planes

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    max and s

  • 7/28/2019 08 Stresstrans Print

    34/41

    . . . . . .

    max s

    xy = x y

    sin+ xycos; tans =

    x y

    xyObservation: one of the two sets of solution to tans eqn.

    coss =xy

    R, sins =

    x y

    R

    gives xy = R > . Recall that

    cosp =x y

    R , sinp =

    xy

    R

    direct verification s = p (rotate clockwise from p)

    Check:

    maxinplane

    =x y

    + xy= R =

    ,

    mininplane

    = R, s = s

    , avg =

    x + y

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    max/min in-plane shear stresses and the complementary

  • 7/28/2019 08 Stresstrans Print

    35/41

    . . . . . .

    p p y

    property

    min/max have the same magnitude;

    Shear stresses are evaluated in the faces associated local coordinate system;Algebraic sense is in accordance with the complementary property;

    Double check the arrows (head to head, tail to tail).

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Example -, page (nd part)

  • 7/28/2019 08 Stresstrans Print

    36/41

    . . . . . .

    p p g p

    Given: plane stress state with x = MPa, y= MPa, xy= MPa

    Solve: Maximum in-plane shear stresses and its sketch

    x

    y

    84 MPa

    32 MPa

    30 MPa

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Example -, page , (nd part)

  • 7/28/2019 08 Stresstrans Print

    37/41

    . . . . . .

    Solution:

    p1 = 14.7

    1 = 92.4 MPa

    2

    = 38.4 MPa

    principal stresses

    s1 = 59.7

    s2 = 30.3

    27 MPa

    65.4 MPa

    maximum shear

    stresses

    solution-: maxinplane

    = R = . MPa cos s =xy

    R= .

    sins = x y

    R= .

    For s [,

    ),

    s = + arcsin(.) = . rad,s = . rad = .

    Then s = s + = .;

    avg =x + y

    = MPa

    solution-:

    or simply s = p = . = .

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Remarks on plotting in stress elements

  • 7/28/2019 08 Stresstrans Print

    38/41

    . . . . . .

    Key points: sign conventions ofnormal and shear stresses

    . all data from transformation eqn. are for the local coordinate system

    . two angles apart indicate the same plane

    (one faces () sides; complementary properties). convert algebraic value to physical sense while plotting. dont forget the avg for max/min shear stress plot

    . dont forget to mark the angles

    .

    double check!

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Remarks on the principal stresses and max. shear stresses

  • 7/28/2019 08 Stresstrans Print

    39/41

    . . . . . .

    . Maximum/minimum normal/shear stresses and

    . the associated orientations of the planes

    are of practical engineering interests, since

    different materials (brittle, ductile) fail on different types of stressesbrittle (): fails on normal stress;ductile (): fails on shear stress

    need ofsafety checkagainst allowable stress

    consideration of orientation (to strengthen on a specific direction)

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Summary

  • 7/28/2019 08 Stresstrans Print

    40/41

    . . . . . .

    plane stress state

    transformation equations for plane stresses

    matrix form; local coordinate system for each inclined section

    principal stresses/planes

    max/min normal stresses; shear free;

    two perpendicular directions p,

    , = x + y

    R, R =x y + xy

    way-: direct; way-: trial-and-error

    max. in-plane shear stress/planes

    max/min (algebraically only); two perpendicular directions

    max = R =

    ; avg =

    x + y

    relations between principal angles/planes

    s = p ; s = s

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /

    Homework

  • 7/28/2019 08 Stresstrans Print

    41/41

    . . . . . .

    Chap. , , ,

    Due: .. (Mon.)(to L)

    () Lecture : Analysis o f stress ( I) stress t ransformation Oct , /