01.`[email protected].. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

70

Transcript of 01.`[email protected].. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

Page 1: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;
Page 2: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

1

�������� � � � ��

��������� J-PARC/MLF 2008 � 5 ���������������2015 ������

!1MW"#�$� %&'()*��+,-./���0123456789:;<=>?9 J-PARC/MLF @A

�BCDE�FG9:H�IJKLMN�OP1QRDSHT<S�0UVWXY789:;<=Z[IMN\]

^�KLMN_`aSb�c$d����efghij-Dk`��KL�lmnopqDrs<tWb

8uv �9V;�H=�w�14T�xy�z{|}a ~�k`���4�H����1���D�����D

�?H0b���� 20 �A��5���:9�(�����+,-MN��!KEK"0���k`0�9 J-PARC IJ

��KLMN_`����*�n 12�!BL12"�(i��� ¡��ij-!HRC"Dk`<234¢£T8;�H=

HRC KEK IJ�¤KLMN\�¥¦§¨©ª«D¬0<2­��®�¯°�±²³°eE�(:�����i

��D#�<tW`�78Hij-a<=´µ1¶·�*¸�¹Dº 1 �»�;<=¼ij-�UV1½¾a¿2��

���i�� �E/Ei = 1% ÀÁ0`�789:;<4�b8 b�Â�ij-0�9 %&'(�����i��a

<=b�H£�ÃÄ����� (Ei) D(W�9S(i��DÅÆ34��a¿°��$�ÇÈ (Q) ÉÊ�i��S(

W�Ë;<=>?9�b8ui��4Ì°�ÍÎ�ÏÐaV1w?HÂ[�ÑÒÓ�Ô��Õ4QÖ0XY78;<=¨

×a�IM4���9:Hi��(@A0:Ø� �IMÙ4ÚÛ<2U@AÜ`Ý�U@AÓ�ÔÞlß�à

� ¡��!�~ᶷ"�¯âU�ãäå�-�æÃ�¯°çÅ782è³�4�é;�H=êë�cH�`�78

HU@AÓ�Ô�ì<2Ónoí�mîDÞ:H¶·ïàðñ�ï na �IM~���0òó�ô�õö÷·

�ø4ùT89:;<=¼ij-4êú<2 sub eV-eV (�����ûüa�(@Aefgh �IM4úý\þ

<2��� 3 ��ij-a ��:ûüa¿°����¶·�0��Pa¿20:Ø�aSeE�þa¿20��

T8;<=

Beam Line BL12

Moderator Decoupled liquid H2

Planned detector coverage (vertical) -19° 20°

Planned detector coverage (horizontal) -31° 124°

Sample size 50mmX50mm (max)

Incident energy 1 2000meV

Energy resolution (�E/Ei) 1 5% (chopper dependent)

¶·�k` ���Q�a�°�IMÙÚÛ�i���9S��¡�a`·4Q�a:;<=�� 21 � 10 ��

U�ãäå�-�¨��`·4���;�H!� 1"=y�S�� 21 �A��U@AÜ`Ý!���Ô����à

*���U�ãäå�-Þ�ñ)�m�)��lß�à� ¡��ô4æÃ7825�a<=��14T�å�-�

Þ<2 3He ���!"4(#D$G9�°�%µ1U�ãäå�-&9�æÃ� $Ê4ww2è'(a<4���

22�A� ghä 40AÀÁ�å�-� Þ�¯°):Iê*�ê_4���125�a<=

�������� ����������������

����� !"�#$%&'(�

Page 3: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

2

¼¶· J-PARC +n¹����,ÞBAD³-9¨.�Þ7825�a¿°�/012 J-PARC a�1234D

59IM�S�W KEK I�M�¹¡l�67���8aê_78;<=¨×a�¼ij-�¶·12���9

�IM٠IRT 120�9�KEK I�M٠S �120�9��9:78;<=;H�IM� IRT 12��

�9 ;àð�op�wT���MN<=DFG>G2?@D`G25�a<=b�¯Ø��Ë�AwT HRC 0:Øc

�W@ 1IMNAB4C+78;<=I;àð�op�wT�DEP1F,Þ0FGHD�I:/�JK;<=

L

� 1:L!M"(i��� ¡��ij-0!N"U�ãäå�-`·OPQR

Page 4: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

3

)*+,-���� � ./� 0�

2009� 10� 16S>GaTUVÄIMN_`WXYiZ�[ª0�9\]^�;�H_¼#0/�;<=b�`D

�a°�9bcdefâb8;a�MN�deD7g9hVH:0i:;<=

j IM�klMNZamnoDpù�H��q¸qíWíqlr��q�¿2�¹nlr�ÔVÄjMN_`

Stanford Synchrotron Radiation Lightsource (SSRL) Anders NilssonMNZa 3�Ê�s*ntWq��o�t��¿

2s*nt��i�u�MN\ FOM Institute for Atomic and Molecular Physics (AMOLF) Mischa BonnMNZ�9

1�vmnMNw0�9xy�9V;�H=

j�b8;a�MND¨za;0£20{jD ?9º|W&|ÜL}~D�2�a<=�����(�É U���

&|wT���&|0�):����G2º|ÜL}~DVÄj X �ij��(,ñ���ij���ij0:?H��

1ijîDÞ:9��Wi�����a��<2b0D�P0<2MND�?9V;�H=½��{º|W&|��i

��4��2}~��D�éMNì�0�9V;�H=

��$d�j �(�ÉW��Áa��ãº|��G2�i���\|�W}~D��ijDÞ:H�tHMND�

:;�H=b��(�ÉW��Áa��\|�W}~ ��}~�êë�}~� ÁaS�-1�¡�Øw0:Øi:

wT�q¸qía �㢣�Áa��ãº|��G2���\|�W}~DU��¤�j¥�ijî Ambient

Pressure XPS (AP-XPS)DÞ:9�t;�H=b� AP-XPS �¦/§�78Hñn¨©D�Æ¥�ij-�ªW�õ

öD·Wb0a>Ë�É�CT89:H XPS «�D�㢣�!È Torr"Áa����;<=úý���}~¬��

a�ÜL}~� in situ «�4��1ê*Aî0�9­�D®£9:;<=¯��s*nta ��ã°��G2�i�

DMNì�0�;�H=�ã°���1��W}~D��<2H£� ��ã°D��<2i��±P�¤¡Ga1W�

/PJ�t�²à)��Di�����a�Õ<2b04%³a<=�ã°&|��i�D��P�å���wÆE£

9(:$Êi��!10-13 ´"DSÆlß��´ñ���ijî�$Êi�µ¶Ç��ijî�DÞ:9�Ó·��ã°�

�G2�ãi�!�W¸JW¹ºJ"��(,»/W¼½t�²à)�D�t;�H=

¾��y��MN¿r�Æ:9À~�de7g9hV;<=j�\^!TUVÄIMN_`WXYiZ"4»<³°�

j U�VÄj_` SPring-8 �ÁÝ78HÂÃULqÄ��o�ï nWIJKL���*�n BL07LSU axy�9

:;<=b� BL07LSU ��:9ùT82Å X �ûü�(ÆAW(i��VÄj�½¾DÇw��IJ�²È����

É\¥�|��Ê���ÜL}~t�²à)���ÊË�ãIJ��¤¬���Õô��[1MN4��789:;<=

j ¯�aS�BL07LSU ��:9ùT82Ì��� X �0lß��´ñ���jDÍ(Î�gH7n®W®m�Ï

$Êi�j¥�ijî�¯°º|ÜL}~t�²à)�D�t2MND¿r�9:VH:0i:;<=ÐËP� ��ã

¢£�Áaj¥�ijî4��2U��j¥�ijî0Í(Î�g2b0a���ÜL}~D}~� Áaqq�¹��

�«<2b0D�Ñ�H:0��9:;<=

ÂÃULqÄ��o�ï na �10 ����ÒÓÔÕ4��8����Ö�nÔ�o�ï na�ê*4r×�9

:;<=��,Þê*S 2010 � 1 �wT��825�a<=b�ÂÃULqÄ��o�ï n4�IM4{��,

ÞW��,ÞØÙ�H2\ÀD�ÚaV2`\a¿2¯Ø�Û 14TÜÝaV8Þ0��9�°;<=ß��FÑæW

Fàáâ�W�I:^�;<=

-��%123(

Page 5: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

4

456789����� � : � ;<�

L

¼�A� 10 � 16 S>Gauë�@ã`KLMN_`äUMNZ�[ª�\]^�;�Hª¦0/�;<=L�wT

UL�;a)åULaæF��y�� 9 ��L÷Dpù�;�H=Fçè�×S�:w0 i:;<4�)åUL ¶

°D_a£;8Héê�÷·�9:;<=bë�£;8Hìíw1�� MN�ÇDî2JaeE�ïða�H4�j

�ñòéa¿?H�aò��ó�ôõ1öS¿°;�H=¨×aIM )U1�ê�k9T89:;<�a�b8;a

0 ÷:�â�â0�H�iaMN4aV2�a 1:w0i?9�°;<=

-£��b8;ap°Í�aVHMN0IM0���°�Æ:9øtH:0i:;<=L� 4 �wTmn1ù�

X;aúûüÜÎI��G2�E�ýþ�MND�?9V;�H=ì�0�HIJ �E�ýþD»<b0aþ�1

CeB6a<=b�IJ� CeD Laa·��9:V;<0�IV�0�Þ82c��ýþ�4�ú<2b04�¯¯ 10��

��è78;�H=¯���[1MN4��8H��b� IV � (¾��E�ýþa¿2��4(:b04�w?

9V;�H=�w��(¾��E� �~�<2�`4çý�1:H£�j4L���� ���(¾��E�D�

t9:W�w ����|�a�H=¯ba�IV ���<2èèDù2H£ CexLa1-xB6� Nd ¬ Pr 0:?Húûü

ã�snD�+��¯���Dã����ãÜ�ã`��«�1 a�t9:V;�H=La D 30%ÀJ·��H©

a Eã�wT IV ���½��A4 1.4K ÀÁ�12H£�ãÜ«��Æ:9 ��,Þ0�9��MNZ�l�*

·�î�¯2E��ãÜ«�¶·D Þ7g9:H¡V;�H=��,ÞaIM��£9ÌD�(Ã8H� mn1ù

�X 1 ���a¿?H0���9:;<=òóSS :H$Ê!�"#wT$�aIM�%w:;�H=&�:'(

wT)*0�9ú8H"+,n���kI409S-�Pa�yaS¯�QR ?V°0.�9:;<=/01¬�2

1wT38Hê×ULa 4UL0�56D7£2�8 ¯Ø�W 1:H£�)å�:Hj0�9 ��,Þ44UL

�×[056D7£29:��8a�H=¯��S;Aw��Maê*7g9:H¡V;�H4�¯�A��W�b0D

L<b04aV�MN�ì<2Ó�=�ï n4J4?9:V;�H=¯Ø:?H�a ���,ÞaIMD>8H

b04MN?0�9¬?9:WV?wGD@�9W8H0z�2�wS�8;g�=

���ã`DÞ:HMN �4�MNiñ0�t20:WÆw�½¾4¿20i:;<=;��AO°�¶·4�:b

04AKT8;<=´ ¶·a¿2���B­�¡�SAO°a<��«�Þ®m�ÏSC¼P�&9AO°a<=jS

UL�$d�®m�ÏDOD�H5*4¿°;<4�biaO?H¶·aê*�9Eù�:W·�¹4ùT8H$ ;0

Sz�1:Fâ4GVJ4°;�H=bØ:?Hã*4HI���2� eE�J P¡0i:;<=;H�b8;a

KSèHb041:c�ú���è�LM<2çN4(:b04AKT8;<=½��uë�@ã`KLMN_`a

ª[l*�O����¥�DÞ:H«�4¼"P���2¯Ø�12H£�¯�çN ¨P(W12 �a<=bØ�9

���@ã`�½¾D:WÆwQA�;<0�eE�R;8H��aMN4��2b0DS£9ö-2b04aV;<=

j b8;a�MNa���@ã`T5*0:ØU�µVD�?9 :;<4�¯��i ñWaX?H�Î:0Ya

í$��9VH:0i:;<=Z�@ã`T5*0:Øb0D�w�9[c1q�·qD�(���¯8DMN�Çw�

9:G8Þ0��9�°;<=

L \ ]�°;<4�äUMa W^�'ªa ½�6¡í�� DÃ89:2b0aSþ�a<=jS\]�SwT�

S�_���89:26¡í��`+�9�°;<=aS6¡í�D<20bcad�wT�MNÇ/�Ge4�2�a

1:w0Û� fg�9�°;�H4�êë S[��Ç�¸qhq4ÆW0��ò ¯:�i½��S1?9�°;

<=MN0ig9�6¡í��×SS[jQ�9:W\ça<= Øk�FÑæFàá�ò ¯��W�I:^�;<=

-��%123(

Page 6: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

5

=>?�+,�����@AB�� � CD� EF�

L

L y�� 4 �� 10 �ªW�%\�1?HIMD38)åULVÄjKLMN+n¹��½x:H�;�H=IM0

:?9S�H��xyê �ÆWÞ�(�����+,-MN����lr�nl�)�q�!PF"0zØVÄj_`

����*�n�BL-18A0 19A�19BDl��9:2TUVÄIMN_`�ÆWÞiZa¿?HH£�m��%\�

1?H�Sww�T�"�ß�0 ¿;°���ww2�841W�¯�Ù�Æ:9 ó���¡?H1¿0ö-9�°

;<=TUVÄI_`� L���wTn4¿°�PF � M1 ����£9ê*�>8�Û$�'c����*�n

ao:·�¹4 � �p82�D��ÛH°��9�ÐË b�¯Ø10b�apG8Þ1¿0i?H�D���9:

;<=;H¯�Û$ qr�S;¡IM�VÄjqn­a¿2 SOR-ring 4¿°�¯éTaS'��s���0�9Ô

)¹��MND�:;�H=¯��_`�[A0�9\]�Hta<4�ý]� 10 �ªW�Ê�TUVÄIMN_

` �Û�5��9:H(ÆAVÄj_`�k`�uQ�ÈA���]v�¯�9���w0:Øx��$XD5*��

¯�� SPring-8 �yG2Å X �(ÆA���*�n�k`�¯�9y� 10 ����0;7��[1Ô*B4þ°;�

H=¯�¯Ø1z/0Sz�2XÊ�Ê�¨×a PF � BL18A�BL19A�B ����*�n�yG2s���67�

��ê*�o�ï n�q¡®­ñ�Ô¬c¶·�r��b8T�¶·¬4����*�nD ?HIMN1 S��

�9�?9V;�H=\]Û$�s���67���U]7 y01?9 o:i:�a<4�Û$ L�$d�bba

pVH:0i?H� UV1{�¡?H1¿0i?HS�a<=�w��ý]�c��(N��ni�j¥�ij¶

·�r�¬�VÄj0 STM DÍ(Î�gHc�:ê*Aî�r�1 x�(14TS�W��4JKT8Hb0 ¼

Û�|}a¿?H0i:;<=:�8��S~�Õ���Áí�!ú JASRI"���¬��¿�(^��¬_`�L�

�¯â�¹¡l�ß7��²È6��n����m��|���¬�@íÕ[ª�¯�9MNZ�ß7��� 1��

��ù1w?HS�ab�`Da°9ö�/�JK;<=

79)åUL�\]�9v�¿;°4<�;�H=)åUL )å0 :?9S 16 ���)å��wT����½��

úý Â)å�2��þ°;<=2� �WwTS¼���¤4��10b�a����0w�00ê8a �Þ89�

°�#�� ����)4����S� �j�4���,V��>82��:V�j0�9 09So:0b�a<=

+,n�� #wT 4km ò 38H�_���þ°�y  ¡�H¢_4ʪ�è�9:;<=Æ;°��â°�Hq

£a<=�H��xy<2VÄj+n¹� PF 0��VÄjD ?HIMND�Ø_`a<4�PF ¬ SPring-8 0

¤1°�¥ 9 $wT¦ 8 $;aÄp�)·��(}½�9:2§&1¨_`a<=�wKaÆWÞ�0V��t9q

*¡)��HMN�ÇDî2b04aV2¯Ø�1°;�H=0 z?9SMNb© U]����b1�89�°�V

Äjqn­ ¶m4H?H� 21 m0:ØU]ª71������qn­14T��������½D�w�9%&'

(i���j¥�ijD -£ù�iñ�½Ü�HMND�?9:;<=�H� úý�L��jIMNZ0� �9�

cW(N��ni�j¥�ij�o�ï nDL�0«��éJK9�°�������VÄj0(i����ni�

j¥�ijD�w�HIMND¿r�9:VH:0��9:;<=+n¹� L�,Þ¡Ga1W&u��,ÞW��

MNØÙ0�9rV789:;<�a���þ2× ¬­F¨®:H¡G8Þ0i:;<=;H)å�bT8Hë�

_`èL¬��èL�S¯e��é°°W¡7:=

'��1°;�H4�IM�;<;<��¿D±��9²D·VH:0i:;<=ß�¼Û� ØS¿°40ØF

³:;�H=

-��GHI(

Page 7: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

6

-�JK��LM� � N � OP�

QRSTU%�

L IMN\�´]�9 ¬ 5 �45æ�9�;?H=b8;a�IMa�S[D¨za;0£20��µ��v0

j4è�×£H�v�0:Ø0b�¡�Øw=�¯�1¶�1b0�0·¸78¯Ø¡4=�IM�´]Û� �:?H

:;D�HT¯:�w¹:�1w�¿°�¼Û�@:®ñ¡ï,�DFG9:H=´]��£9IM��x�HS��

"�¡9º»��IM�kI4è�H0V��1�0S:�1:¼½1ö- :;aS¿°¿°0.�9:2=bØ�

H¿2Â��*n®wT¾�<2� �j� �W�$Ê0�¯�9�W��0��8:4%µa¿?H¯Øa¿2=0

:Ø�Gab�MNZ¡¯°a �j�MNZD¿P�H��¯Ø0�9:2�L� 3 �D���9�ÀBº�a1:

¯Ø1MN���DÆ8Á812;;�Â:9:VH:0iØ=

VRWAXYZ[\]�^_`abcdefghi�

L ÃÄÅ MNZ��XwTýÆ�9mn1ùD¿P�H -£9�{ÇLMNw�a¿2=�8: 09S�M1S�

a¿?H=ÂU�I�[ªD¬?9:2È7�wT{É¡U�:2mn1ù�L�4ÏÐ<2�AD��9:2wTÏÐ

�9¿K9W81:w�0ÊËDFG9�8?H�4�£9a¿2=\�9(20�j4��¬?9:HMN120ª:

b04�w?H�a�-Ì¿��MN�9(¯Øw�0:Øb0�1°�ÇLMNw0�9Í�Ã8H=4�b0 ¯�

1�À~a 1:=b�BÎaê ÃÄÅ mn 3 ��;a1?9�°�¯�$Ùaб41w?H�a¿2=0:Ø

b0a�¤Ï0Sz?9::ò Ì:XÊ�Ð�À���Ê��mnpù�H£��ÑбDÂW%µ4¿?H=À³1

T�Ò°<20b�wS�81:4�@:Ó�0Ô��¬4/w78H�a¿2=;HMNZ�éJK$��®m­*à

n­�èÕ4íÖ1�4MNZ�:9W82� �U]¿°4H:b0a¿?H=

L ×0p°Í�¡o�B �ØÙ�¿2Ú�ÛÜÝÞ©�5ßDiÓnoí�m��a¿?H=<a�j ��xyê

�Uà��UL�a¿2ùA���5* þ�9:H=�w�Ú�Éý�½�1 �¯Ø1I�P���¿2�Dù

2� �Ónoí�mvc�q�áq¨�bã�So4%µ1b0D�©DS?9i:è?9:H=H;H;b�Aî�

)*�¹�vcDðÞ<2â3�Æ:9 P. Werner ã4�Ð+à²�a\D��¯ba¿;°��aV1w?H�a�

ä��å7��:�:�0å:9:2Øé��j4�VH:æ2�¯�×î4¯�;;ðÞaV¯Ø¡0:Øb04�

w?H=¯b�ÃÄÅ4VH�a�Sد8 ¬8Þ::-Ì1:�0:Øö-a�j�0?9 ò0� �G9:2M

N12a¿?H=4�¬° -£9(20�¯�1�À~a 1:b04<ç�èÕ�H=;�Werner�×îDê¶<

2�¿H?9 �mé3�ên­���)*�¹�vc�ê¶4%µa�ë�¬20¯ba$Ê4ww2b04èÕ�

H=o)�í�1ÍΠб�SÂ:9¿?H�a¿24�Û$�j0ÃÄÅ� a �ì��Û�$Ê4ww?H�a

¿2=$­p°¬ÈíP�Ê�$1 aS$Ê4ww°�¬?0��4/V×£H� ÃÄÅ4³E�¿PD¿VT£9

v�¿PDîm��mn 4 �01?H 5 ��a¿?H=�w�bb;aV9S�'��¨Æ¡G Ø�9S��T81

:ï�4¿?H=�ø�Werner�â3 ¶X7onï,�©�ì~<2S�a¿24�bba�É\vc�×î4ÛÜ

ÝÞ©�¯�;;ðÞaV1:�ðÞ�9Sðñ1ò N4ò:��a¿2=¯?9ÛÜÝÞ© ¯8óÞ�Ónoí

�mvcDôõ�1G8Þ:G1:�a¿2=bb�ö°�ÃÄÅ4¿0a{�µ� 6 ��0�<x���4×;?H

�a¿2=b�� jSeE�x�w?H=aSÃÄÅ0ÏÐD��:�:�1q�·pqDõ�9 �¡£¡0÷ø<

20:Øù°ú�a¿?H=ÃÄÅ�mnб�·¡Ô*�nDʪ�û��ÃÄÅ üýÇ/�òØSþ��1°�Æ

:�Z[ C:�£T8H=j �DWW°�¿0¨S¡Gq�áq¨��SoD��9::�Di:Æw1w?HT�

SØ¿VT£9y�·�¹aбDÂbØ0Ô�<2�:H?H='��q�·pq '��¬?9VH=j ¯8D

��jklm�

N ��j

Page 8: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

7

�°����¸Ó�9�vkv��;;ÃÄÅ��H�a¿?

H=

L 4�b84i�b0��¡��H=q�·pq ~�a¿2=

ÛÜÝÞ©�¨���:�i e� �i!4 ¾��"a¿24�

b8D3g��Ä�i��µaª��9¬2�a¿2!� 1(a)"=

bØ<2b0a�3g]È��[]È�µ �2S����b°

��iD�¾ ÔaÂVV2b04aV�N�¯:q�áq¨

�D��aV2=b8 U]Ø;W:V�b8;aaV1w?H

��ûü���4�£9��01?H=¯�9b8D,Þ�9Û

ÜÝÞ©�V8:1��D<ç�ù2b04aVH�a¿2!�

1(b)"=b��D<ç� JPSJ �ñ¹�����H4�êJ 3

S������Ô�4VHb0 Ø8�:b0a¿?H=b�×

î ¨.4¿2�a�AîD�¿7gH:0i:ÆÆ�;¡

Hg9:1:=

L ÃÄÅ ¯��r3mnDpù��üýSÔ£�ya |g�

¬?9:2�0iØ�=× �£9î°��H�4UL��L�

0�9�09Sö�7:S�4¿2=ÃÄÅwT j �W�b

0DLÞg9ST?H=;�jb©� Windows wT Mac ��

@BS�4178H=úýMNZ�;n�ð�¹��4<t9

Mac a¿2� ×�g:a¿2=SبÆUV:b0 �

Fortran wT C++����a¿2=�[wT C++ ��1?9

:H�a¿24�ÃÄÅ4 C++�wèT1:�wÆ@W�<<

£�0:Øb0a�bba����(�?H=�� -£�¨

� �W�::;�Ô4wG1w?H�a¿24�:;a b�S� ¯w?H0i?9:2=Ruby S×wTª�?9�

��W®m­*àn­7g9ST?9:2=ÃÄÅ�¯?9®m­*àn­�� ��P�vc78H0:?9¯:0iØ=

nRop"qrstuv�wxylz{|b}~F�ghi�

L j�MNZa��ÂU�¿P� �mn1ù¯°ýÆ�x�¿P�H�èÅa¿2=S0S0 ���MNZaþ��

ê*D¬?9:H�a¿24�¿20VÓnoí�m���� DFGH�4n01?9�Æ01?H=mn1ù 3 �

Êa�ÐMND�éJK9��7g20:ØB!4¿2�a��-þ��iña1�w¬°;�"Øw�0:Øö-aÏ

ÐD×£H=

L -£��HMNo�B �¯�;;� a #�aV1:b04<ç��w?H=¼Û1TbbaéÌ�0ÏÐ<

tV0Va ¿?H4�Û$�j� ¯�$ 41W�ò0� V·V]|�01?9�;?H=b�0V�%%´0

1?9:H¡:H�4�(qMNZ��&[ªa¿2=�&7����èÅ�ÏÐ��A�1?9:H¡:H=�0:?

9S��&7� b©�MN4¿2H£��ÏÐ� ÆV¿ØS���MN <t9�èÅ4b´'b�P�#�<2

�1?H=��èÅ ½�mn 2 ��¯W(@�9¼Û�)âH0iØ=biao�BD(ÆG9W2¯Ø�1?H�a

¿2=bb;a �èÅ�MN���9�&�j�ÜÝ *ma¿2=0:Ø�S��èÅ0�&7��ÏÐ4+;a

ò0� ��aV1w?HwTa¿2=�ó�K14T�¬?9:2b04�w?H� �èÅ4mn1ù 3 ��1?

H¿H°a¿2=b�$XwT�¡�¡�j ,14T�t�q­*�¿r��S��74�w?9VH=�èÅ�б

DÂW�¿H?9�biat�q­*��Îw:\D:-°;�<�4��W1?9VH��Ñ? º:�aè9:H

4�=:-°¼<Hâ�б��4-89�;?HwT�¹.¡GDwG9:H0S:�2=¼Û�/�t1w?H0iØ=

L �èÅ0���MNa/8T81:i:� ��èÅ�mnб<���0¦OPa¿2=¯8 )q�B��Ï�

¦a¿?H=j0�&7���èÅ4ð1öD2�14T�'��3²OPD�?9:H=¦�Ã8�� ;ñ���U

vD�t14T�j +;a\wZ�4�a56�9:H=j4éÌ�0Ç/� -£H� ¦<�wTa¿2=b

� 1. (a) �Ä�i�i��7�� (b) ØÙ�¿2ÛÜÝÞ©���

Page 9: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

8

bwT1¬w<T<T0±84a9V9�����4���¨�ÆGT82¯Ø�1?9VH�a¿2=��èÅ ��

{94�°9VH�0: £w�9:?9:H4�9D��<H£� � ;ñ��DUÚ�;p<2%µ4¿°¯Øa

¿2=Sé��<i16=S¿�g9=�ÕG×F�� �¨³°�S>41�0w?�?H=)q�B��Ï�¦ '

@��0æF<½A1Sa¿2�G¡4�b�)q�B��Ï j�0?9:�:�1�a�B/8T81:S01°

¯Øa¿2=

L 79�èÅ4¬?Hâ3 UVWiG9ÛÆ¿2=¨Æ ¥CýþªDa!ãN4 Ø»2EØw0:ØMN�Sب

Æ ¥CýþªDa�¨�ä^|��F��MNa¿2=¯� éTS�j�0?9i:Ã8�@:S�a¿24�b

ba �?�MNDde�¯Ø=þ�æã©a i�F0�¥C|�45G�]Ü<2�:��2¥Cýþ�0�Þ82

�4¯W�«782=¥Cýþ��H�Hú�a�wT��1?9:H� �NMR ê*a¿2=��M�IÄ7�4M

N8a@��9:H�a¯W.�9:2=�NMR a(20�¥Cýþ½�¯°(:�AaV�£9-:t�²à)�4

çý�9:2b04»J789:2=b8 :?H:;a¿�Øw¨0:Ø�4�æa¿?H=�w��z?9�j

�ÞTW¯�b0D/89:H=�èÅ4U��KN4a20:Ø�ð��DS?9W2;a =�èÅ��� �Ô�

w�Vt�q­*����LÍ(��?0?9:2=� 2(a),(b)��ÔÜ�%µ1t�q­*���g9�W=Í�:M

Õ NW4��èÅ����O �ª�D�?H��~��ÈDPÅ9ÔaQ£2�a 1W�R�ÈD�Ûi<2b

0aQ£2b0a¿2=�D� 2(c)�»<=�GO

Þ�UV7 VD�¥Cýþ½�4�-2Ù V=Vc�ª

ÁG9:W0�¥C�KN��a ¯�ZÈ�4U�

12=b8 ¨�ä^|�4SF��12b0D�

<2=b84¥Cýþ�A¯°(��½¤1I0�

T<2056782=úý�êë� �¯Ø1¥C|

�4êú�9:2w��¯TW ¥CSU¨|���

Æ:9�MNDV$�9:20b�a¿2=

L �èů�9�&7�wTSê��W�b0Dª�

9ST?H=1�¯°`��Ð�¯2;/���ܵ

17�DWù7g9ST?Hb0409SUV:=y

��j�MN���¨Æ�12b0 Ê÷:1:0b

�a¿2='ªa �ª716�¨�Èí�� ú�

�¯?9 �41:wS�81:0iدØ�1°

ÆÆ¿2=¯8 ;/���6�¨ÊçD��ÛH

°��9��5*�CÁW�[�:56a¿2=�è

Å��&7�� �¼Û�ö��9S�V81:i:

a:?X:a¿2=yúýS��èÅ�mnб��

YDб�;0£2tW�T¡�Z[�H°ÌD­?

X?H°�9:2=

�R ���WAXYZ[��?�b�/��ghi�

ÃÄÅ�MND�­VÆ:¡� �\n1ùwTýÆ�9:2]¼Åa¿2=× �� 22 � 3 ��mnDpù5�

a¿°�r3¿P<8Þ\n1ùwTýÆ�9mnD¿P<2�£9�L�012=]¼Å0���MNS�_¿°�¿

°a¿?H=\n1ùa �]¼Å�¸^©�æ24|º:�0HHV'Ö¡Ga?�?9�;?H=�w�¯���\

n�?�°wT_�ò �Êa�;7�ÃÄÅ0¬?H5ßDiÓnoí�mî�¸^©��~ÞD®U��9W8H=

;�¥`*¡opnê,�6ã�S�Iæ2Dp°a:�$:9¥C 2 �,n��ª¦�æ2�p°Í(�bc�

б�1?H=× bbÈ��MNZ�q)op�op�¬01?9W8H=U]¿°4H:çýa¿2=

L ]¼Å0���MNa¨�i:�7:� �¨�c�:MNo�Ba¿2/P���MN�0°ww° -£�0Va

¿2=b�o�B � -£j4l*n�� Thierry Martin ª«0ÏÐ�H0V��9VHo�Ba¿2=U]J P

�� (a) ­q�n�È�t�q­*�, (b)þ�GOÞ�t�q­*� , (c) ùT8H�KN0!ãN

(c)

Page 10: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

9

1o�Ba¿?H�a� -£ bi4¬?9�;�Ø0��9:H=]¼Å�So�B��YDd�ÆÆS�{��j

�¬Tg9W8�0z?9�:H=�w�j�òØ4e�W1?9�;:�Èf�V·|�01?9�;?H=¿20V�

]¼Å4�¬�¬�14TªÁ:9W2=1�w0i�Þ�/P������'���4a9:H�a¿?H={��

4¬T1:wT�j4¬?9�;:;�H�0�ga¿?H=À� ÏÐDV$�14T��� ]¼Å4ÚÛ�H=m

:m:ÏЬh$ijD�9�'��|º:Ú��½�D(ÆG2b04aV�l*n��­��®0�Ñб�;0£

2b04aVH=

L /P�� ¸^�;�¡)©½þ�|º:½a¿2='ª�Ú�Ô¡��56��D«?Hê*a �6«�a*

ntÄq����í h/e2×1/T !T kæTÈ"012 ��0b�a56«�D<20/P��4kæTÈ�¯T��

h/2e2 012ú�4�«782=b8 ;��ñn�dæa+��O¡l�îl4���9:1:b0D»J�9�°�

¸^©�t�²à)��½¾D¯W»�9:2ú�a¿2=¥�Ê�GOÞDrmaV20V��Ð <a� Büttiker

T�¯?9�n789:9�ê*0S¯W¿?9:H=�w�Ú�Ô¡��6�¨D]�H0V¬�iÈÚ�O���

�¡ê|�DÆw?H0V���ã¥�4ÀJ�����D¿H�2w Øw�Æ:9�ò0� MN4��89

:1w?H=]¼Å Ónoí�m��0ù°'(�D. ��l*n�Ù�;/��0Í(Î�g9�iÈÚ�O��

��¡ê|�aÚ�Ô¡�DÆW20�|º:Ú��½�4ú89/PJDUVW]v<2b0D�è�H=� 3

�´µ1���D»<=iÈÚ�O����¡ê|�aÚ�Ô¡�DO°�o���56¥�DpG9qÔࡹ

n�D«�<2+¡opn­D��!� 3(a)"�þ¼ßa»782/P���«�D��2=ùT8H/P��D�

3(b)�»<=q� Ú�Ô¡�0q�ÔÊ�gh7onï,��@Aa¿2=r:H�¡ê|�!V=0"wTr[�Wâ8

��i�o��¥�DwG9:W!V DUVW<2"0�Ú�Ô¡�D �� -£2=;�/P�� V 4ª7:0b

�a �stu���4ÆWb0À� �s�$�6�1��í

h/e2×1/��D02b04�w2=b�ûüa Buttiker ��Ð

wT¯8ò ÷?H»2E: !���u�D�kV"(T81:=

�w��stu���=1/3, 1/5 �0V� �¿2 V ��V:í

D���9�/P��4�g<2ú�4(T82=b8 ê

Ú��½�ú��1?9:9�UV: V a Ú�Ô¡�4�

�;a:Æ;aS;��ñn�|��1T���n;��ñn

��;;:2b04�ua¿2=���4ùT8×£H0V

��b��½�ú�4��0 Matveev �¯?95z789:

2b0Dè?H=�w��×�� /P��a�OP]Ü;

a5z��wÆÓnoí�m���¯?9Õç��½�D»�

HÙ4c�:=

L ]¼Å0 S�wT{Ê�Îûüa�SF���ÙD74

gv�0:ØÎz¡DS?9:H=¯84¸^a|º:� ú

�D(ÆG2'Ì�5ß¡0��9:HwTa¿24�êë�

¯8Dê��9'��09S|º:�D¡�9W8H� �

­0��]¼Å�9�Ê1:v ��¡0iØ=]¼Å0

MNÀ��S�¯WL��waê �)Þw°0Þ�9:H=

× �½�s�Óq��é´a�ÆT:0V �G:x:�y

8��x:a1�0wz°»�9VH¯Ø�iØ=

�R|���%�w�%���������

L bba MNZ�ýÆ�H 3 ��L�D�0�9�3DÂ:H4�Ûë14T¯�òw�S�W���MN?��%

\�1?9:2=$©Q��QA�H:=2{ã!|}M" IMN\�w\w0�9��MND×£�Ú�Ô¡��

�¥��â3D�H=�GOÞ41:��aS�¼JPa|º:ú�4ú820:Ø�a�j����ð�â3�

1?9:2=Golubov ã!Twente U"� 3 f��mX~ý��?9:H¡V���kã!NEC"0�Ña���ÎÚ�

� 3 (a) Ú�Ô¡�©�7��

(b) kæTÈD]Ü7gH0V�/P���í

(a)

(b)

Page 11: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

10

�¡��бD��7gH=�ã� U]�%\�1°ö��9:2=����ã!|}M"0 ,wT��(�ʨa�

'ª�mPÚ��n��ú��â3DAd�g9ST?9:2=j�L�$d�б�îm�1�a��w�:��é�

1°14TÏÐ�9:2=IÄ��ã!�M" �³�³IMN\��¹DS?9¬?9V9�þ���ÐMN��A4

w°D@�9W8H=b�ÏÐwT�U��¨ã!�M"�Q|�ã!ÂUô"0�MN4×;°��¨¾8þ�æã�þC

�A���MN4Q¿�H=H¡�+a¿;°MN�`+aV�HâHâ¹.D�wG�Hb0D��â�H:=:Æ

w;Tw� a�ú��H:0i?9:2!XY�91:0iØ4"=�åMNZ�Öq�eã0 �q*)6��¥ãa

i� a��MN4Q¿�ÆÆ¿2=IMN\ �, �¥ãMN4U]��a¿?H4�¯��ËD�ѯØv0�

��'(!¡G¨" UVW4�Þ?9:2=Ý�§¨�ã!Â�U�" ¨�Ê7�Ô)0�9MNZ�:9ST:�¯V

��0�9L��|�D(9:H¡:H°�]¼Å�â3�Ad:D�9ST?H°�H=Thierry Martin ª«Dde

�9W8H�S×a¿2=2007 �¯°[ª0�9´]�H����ã� ��&TÈ��¬�T�����Æ:9:�

:�ª�9:H¡V�sn6����TÔ����Æ:9mn1ùL��¥�q�Æ7�0��MND�?H=¿P��

����±7�0 Rashba�GOÞ4¿2©��î½�Æ:9�Èí��� WD�?H=�-W¿P��q�¡¢

7�0 ��sn½����9Ú�Ónoí�m��D�:��Dб�;0£ÆÆ¿2=\n1ù�£�¤|

7�0 p Ç�dæ�Î���9�ÇLMNw�¥��¦7�0 þ��¥Cýþ���9�úýMNDQ�a¿2=

2009 � 8 �wT §È¨7�47�Ô)0�9Î6��q*)6��MN�� �9ST?9:2=;H��MN?a

1:4��W�3yA$Va�%\�1?H�@©�7��ö���Dº�H:=

�R{I������

L Æ8Á812;;�ÂV<�HwS�81:='��ó�¡G;-£1y��MN��DwVH:=C¼ �ã¥�

4W|º:ú�D£³�H:0��9:2=:�:�1�°@4��T82=5ßDiÓnoí�mî ;¡;¡�

¿�$ê4¿2��`��ÐP1×îDúd�ÈíAî�mÙwTè<b0Sܵ1o�B¡0iØ=ªãP1�«0

�9 �¸^�iña ª¦ûüÚ�Ô¡��e�¬dæ½Dp°aØÈíAîDO2b0�þ�¬�¥ã�iña

­¨�����tÄnlr��·pn­0Ú�Ónoí�mî1 �Èí®�$�0Í(Î�g�¯2I¯!D<2b

0�4AKT82w0iØ=10 �DMN�¨Æ��qsÔ¡0��8Þ�´]�9wT� 5 � ywT»°ú8ÞÂ;

V�°±0:Øö-aæ�H=�°� 5�a¨��²³D¿KT82¯Ø�4�Þ°H:=

[de�HMN�Y�±Ý]

[1] T. Matsuo, Y. Natsume, and T. Kato: J. Phys. Soc. Jpn. 75, 103002 (2006).

[2] K. Yoshimi, H. Maebashi, and H. Maebashi: in preparation.

[3] Y. Hamamoto, T. Jonckheere, T. Kato, and T. Martin: arXiv:0911.4101, submitted to Phys. Rev. Lett.

Page 12: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

11

L 2009� 10� 12SwT 10� 16S;a�É¡´m�µ�{����q^���a�Horiba-ISSP International Symposium

on “Hydrogen and water in condensed matter physics” 4r¶78H=y¼�­ 11¼ ISSPuëïn7ê�(ISSP11)

�­ 3 ¼ÂÃUL·`uë8ÏCä�&|P1H[DFG9r¶78H=ÂÃUL·`uë8Ï�¸¹� �{r¶X

ÊD0��9`+?&w4º»����78H¼½W¾Ð�òw�¿�P1¾Ð1 bÀ1¢£�aLæP1560�Ê

P1��D7£�`$<2� �CÁDnWb0�ÂÃ<2�b04AKT89:2=æÄ� ISSP uëïn7êÄ� �

Ö��¬_`4¬01° 2 3 �a�IMN\�¼ÅZa��89VH4�ISSP11 ·`uë8Ï�¸¹�l°�

J��8`�»;°'(a�?H=u��wT 22  �ÆY¼½�19  �@��º�Ê˼½Ç¨.¼½��¯â 49  

�7�¹��º�ÛS�È��ÈÉDÊÖ�4¿?H=`+?}È 103�a¿?H=u�ê�Ëw0ÆY¼½?Dº 1

0º 2�»<=

��� ������ ���

�� � �� �� � � � �� �� �����

�� �� �� �� ��������� �� !�

"� �� � � #� $%&���'()� *+,-.��

/� 0� 1� 2� 34567)89:;<� =�>?@�A<B����

C� D� E� F� GH���IJ)� �K� �

L� M� � � N� OPQRSTUVW)8;<��<)� X�6.��

Y� Z� �� [� �\]�^������� I�� �

$� _� � � `� Ha����� � bc��@��

d� e� � � f� Ha����� � �K.��

g� 4� �� h� Xi��� ��� bcX>?Aj6���

k� �� l� m� GH����� � no��� �

p� q� r� [� $%&���'()� s�KA@�� �

t� e� u� f� GH�����)� O�6��@��

v� � � � � w� GH�����)� x���

g� �� � � y� GH�����)� no��� �

z� {� |� }� GH�����)� O~bc���

e� �� � � y� GH�����)� ��cA@����

�� 0� �� h� GH�����)� �O~���

�� �� � � �� GH�����)� �K�KA� @��

���� �� ����

L ���������������������������������������“�� ��!��L �� �"��������#�� ���� ���������$���#�”�%����&&'�

Page 13: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

12

��� ����������

�� � � �� � � � �� �� �� �

C. A. Angell Arizona State Univ. On the phase behavior of stretched, supercooled and glassy water, and its relation to that of other network and molecular systems

I. Chorkendorff Tech. Univ. of Denmark New Catalysts and Electro-Catalysts for Hydrogen Production and Conversion

A. Faraone National Institute of Standards and Technology

Structural and Dynamical Properties of Water Confined in a Nanoporous Silica Matrix

Y. Fukai Chuo Univ. Iron with water/hydrogen at high pressures

Y. Furukawa Hokkaido Univ. Ice Crystal Growth - From Space Experiment to Biological Aspect

K. Gerwert Ruhr- Univ. Bochum Proteins in Action: Monitored by time-resolved FTIR spectroscopy

R. Griessen VU Univ. Shedding light on hydrogen

A. Gross Univ. Ulm Ab initio studies of hydrogen adsorption and absorption and water-metal interfaces

R. J. Hemley Carnegie Institution of Washington Molecules, Compounds, and Mixtures in the Hydrogen-Oxygen System at High Pressures

C. Heske Univ. of Nevada Soft x-ray and electron spectroscopy of the electronic structure of water and materials for photoelectrochemical water splitting

M. Kataoka Nara Inst. of Sci. and Tech. Effect of Hydration Water on Protein Dynamics

A. R. Khokhlov Moscow State Univ. Computer Simulation of Proton-Conducting Polymer Membranes Structure and Transport Properties

K. Morgenstern Leibniz Univ. Hannover Ice on metal surfaces structure and electron dynamics

M. Muthukumar Univ. of Massachusetts Aqueous Assembly of Polyelectrolytes

A. Nilsson Stanford Synchrotron Radiation Lightsource

X-ray studies of hydrogen bonding in water

J. Nørskov Tech. Univ. of Denmark Interaction of water, hydrogen and oxygen with surfaces - understanding the water splitting and oxygen reduction processes

T. Okuchi Okayama Univ. Proton and hydrogen dynamics in hydrogen - bonded materials at ultrahigh pressures by high resolution diamond anvil cell NMR technique

M. Osawa Hokkaido Univ. Structure of Water at the Electrochemical Interface Studied by Infrared Spectroscopy

V. Pirronello Univ. Catania Experimental Studies of Molecular Hydrogen Formation on Surfaces of Astrophysical Interest

D. Richter Forschungszentrum Jülich Functional dynamics of proteins as revealed by neutron spin echo spectroscopy

M. Salmeron Lawrence Berkeley National Laboratory

Water adsorption and reactions on metal surfaces

M. E. Tuckerman. New York Univ. Proton and hydroxide ion solvation and transport in aqueous environments

Page 14: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

13

L 8Ïa �êW�¯âÌÍ�s�+¹��çý��'ª�����¬��æ2wT­�D®£9:2�V0��Æ:9�

II��mÙwTÏÐD�?H=>Ë�L8¬ó�iñ�ÎYDp°Ï:{�V0��IKL�0:Ø�ÙwT�

�[1iñ�×[�ê�Ëw�1?9:H¡V�ºÐ����¡)�0ÆY¼½Ð�?Dq��q¡®�H=ïn7êÄ

�a ���Ñ®��Ìͬ�ã��G2�WÒ�IJ��ãwT�ã;a��®m�n�*n�l���®l�B

¹�0��Óö��V��V�Î0��¥�|��(�Á���º|��G2�V0��¥�ÜL}~�BCÉÊ��

G2���V�Ú�1 ���¡)��Æ:9�ÆY¼½?�º���¯â¨.¼½?4'c���Æ:9�º�

H=;H�ÔAMN?wTeE�J�(:7�¹��º4�È¿°�7�¹�+¡ï n�$Ê4ÌW9Ì°1:WT:

�¬�ÏÐ4$:H=7T��`+? 8`�º»_`�»;°b�aÈSÊæF�H�a�gR¬�31 �n

lr�B�1`aSÏÐD<2b04aV���MN�V?wGSaVH0å:9:2

L 8Ï�����ÆY¼½?wTÕ:H¸���1w� �“It was a wonderful meeting, perfectly organized, and

with an outstanding scientific program - I learned a lot!”0:Ø¿°4H:¸¡+�êS¿?H=Sé���8Ï4�

�Ö�}×aVH¨��µu �{ÂÃUL·`uë8Ï�wT�67��a¿2=IMN\wT �u�ÆY¼½?

�¯âL�ê�ËwD��,ÞØÙMNw0�967���9:H¡V�7T�7�¹�Ú�Ô��Û®mêß)¹�1

ïn7êÄ�}×�%µ1ÜÓS,Þ7g9:H¡:H=;H�IMN\�uë56Z�ê�Ëw�MNZ�\^<

2�¹¡l�UL���¯âÝÂ7�� �8Ï�}×D�Ad::H¡:H=b�`Da°9S£9ö��H:=

L 1��8Ï��;�®¬®m­*��ÍÎ�Æ:9 �Á��Web6��wTÓ®Dù2b04aV2=

http://www.issp.u-tokyo.ac.jp/public/issp-11/index.php

L ;¡Þ“Extended Abstracts”���4�ó¿2�a��4¿2× êßa��G�;<[email protected]

;aHà�9Á7:=

�±áâÂÃULIMN\L �kl�L

L

L

L

L

@��ºQR�·nB�)ôKUL���;lª«�

7�¹�8`QR

Page 15: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

14

3������ � �� � �� 3�0������ � �� � �� 3����

���GH����)8�4����� ��¡¢£���

L

L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L <=?âã_LLLL¨�ÂU���L

L F¦LLäå�ÂôU��ô�L

L æLLLLçÕ�ÂôU��ô�L

L è¦�¨��Â�U���L

L éêLLëì�ÂU�ô�L

L ã_LLíç�ÂÃ�U}Î�L

L ª�LL±õ�ÂUIM�L

L mqLLî��ÂUIM�L

L m��|��ÂUIM�L

L �ï�­��®4~P­*lßnO�����9ÀËb�È�Ê����ig�T�Òu�H�ã·p*¡)¥�©

0�9�½¤1J�MN4%&ð�a5�P�Q�a:2=y�S���nñE�HÚ�O���¡ê|�¬iÈÚ�

O���·p*¡)Ù��G2�ÇÚ�dæA�}Éý1 =q�÷�4SHT<½¤1I�­*lßn�¡

ê|��¯â²È­*lßn�ã1 �MNo�Ba�c¿r4XYaV2=y¼�ÌXMN8 �b�iñaÇò�

9:2�ÐMN?��î½�j¥�ij�ó4�n��ôÛWij1 ¤12ê*^�DSÆMN?��b�õöO

�W��^�DSÆMN?��¯âi�dæã¬�7mêí�9nã1 �H<2·p*¡)¥�©�MN?4�¨õ

�8�9Ó®D5��ÏÐ<2b0D�P0�9�r¶78H= L ÀÁ�®m­*��¿2¯Ø��3 SÊa7�¹��ºDÊ£9 59  �¼½4¿°�Ç�1ÏÐ4�1�8H=y¼

�MN84�%&��k<2MN�DS¼wT�(�<V?wG0�H:=

¤ ¥ ¦ § ¨

�� � �� �b�����������i�

12:50L -£�

tu��A����#" ¡�cmL ª� ±õ�

13:00 ­*lßn�I�ö���nW*mÓ�Ô¤EWì÷L F¦ äå�ÂôU���

13:30 *mJÚ·p*¡)R�©�Ú�O��L ñ� §ø��Â�U���

14:00 ­*lßn�ã���L ù� ú��)U��IJ�

14:30 ­*lßnW²Èí�Ún�*BnijL û¦ �¨��Â�U���

15:00 �ü

-���¢£¤��¥�

� “¦§u�¨©�ª�-�ýtu��A�l«¬­-®�¯:���”�

Page 16: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

15

°±A²"¦§u�¨©��cmL ã_ íç�

15:20 Spin transport in graphene.L ºþ ���àU�C�ô�

15:50 �7mêí�9nã0º|·p*¡)¥�L �J \¨�ÂôU���

16:20 Z2�7mêí�9nã��G2$�)0��þ�Ð0"������ Ý� §¨��Â�U���

16:40 �7mêí�9nã Bi-Sb4»<¤EIL F¦ �¨�àU|M�

17:10 ��B�·p*¡)¥��O��L �w ��àU�C�ô� �

�� � �� �b³���������i�

´µtu��A�cmL è¦ �¨��

9:00 ä^º|J��m�H CVD*lßn!hýBN"°L Uå ���U�ô�

9:30 ²È­*lßn�¥��¤0ãL æL çÕ�ÂôU���

10:00 ²ÈÎ�­*lßn� �W¥�|�WIL �_ ����_L�U��ô�

10:20 �ü

���¦§u�¨©�ª�cmL mq î��

10:35 ·p*¡);�n� ��Òu<2���n@ã0 KT½� ª� ����UL(ôM�

11:05 i�·p*¡)¥�©��G2*mÓ�Ô q� �å��M�

11:35 þ�*m�,¡®væã��G2|Êã����Ð �� úõ�ÃUCM�

12:00 þ�*m�,¡®dæã �(BEDT-TTF)2I3�PÊO�� �¦ j|�Â�U��

12:20 _� �

13:20 ¶°B�@�·�A

15:00 �ü �

¸�¹#º�cmL ã_ ¨�

15:20 ²È­*lßn�¥�I0�î½ Ô� �î�NIMS�

15:50 Edge states and possible magnetic states in nanographene and

open-shell conjugated systems. �� FP��|}M�

16:10 ²È­*lßn��×%ÕA0¥��î (Ý µ��ÂôU���

16:30 ­*lßn�¯â­*l���º|� STM/STS�« �Î ��ÂU���

16:50 Edge states of epitaxially grown graphene on 4H-SiC(0001) studied

by scanning tunneling spectroscopy. �L L ��)U���

17:10 ­*lßn���G2���n}Ä��Ð0*Bnij �[� §¨�NIMS�

17:35 honeycomb lattice�¤×�¯°�Ò782�7mêí�Ú��½� �¦ �,�ÂUIM� �

�� � �» �b³�����¼���i�

¸±B½·¾Ztu��A�cmL m�� |��

9:00 SiC²Èº|J���¹+ï,�­*lßn q ì��U�ô�

9:25 SiCJ��¹+ï,�ÈP­*lßn�DPÔ¸�n S�ñ ©��NTTC�M�

9:50 SiCJ­*lßnå��Ðå¾ �å m��NTTC�M�

10:10 SiCº|�O��H­*lßn�(i�� ARPES � �Õ�Â�UWPI�

10:30 SiCJ­*lßn�¥�|�«� ! ¨�ÂUIM�

10:50 �ü

Page 17: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

16

tu��AJK�cmL F¦ äå�

11:05 ­*lßn�TU}ã »ñ "��ÂôU���

11:30 ­*lßn�6�)m�mn�#�ì<2�ã $ñ k¨�àU���

11:50 ­*lßnfâ­*lßn²ÈqÚn�¥�dæ��G2ä^¥E

0��Î��� �% &±�9ÞU�ô�

12:15 _�

¿À�Á�cmL éê ëì�

13:00 ­*lßn��G2�dæª���Ð �L ���'qUªò±Ü�

13:20 ­*lßn��dæª� 9q Û/�(ÇU�È�IJ�

13:40 ­*lßn�Î��G2��nO��6 _�L ��Â�U���

14:00 ­*lßn²È�¤�OD0�îú� �q )��ÂU�|M�

14:20 2P­*lßn�¥�dæ �» ¨��NIMS�

14:50 3P­*lßn�¥�dæ0$nÔ�¤ _¼ *P�ÂU�ô�

15:10 ­*l����¯â­*lßn�ã��î0 Dirac¥� mq î��ÂUIM�

15:30 Conductance fluctuations in the magnetoresistance of the grapheme

quantum dot. ÷Î +¨�É¡U,ÎKL�

15:50 -8 �

¶°B�@�·�AÂ[tuv�

�� � �� �b�����������i�

P1.SbCl5-GICwTOD�H­*lßn��î½ 7q �å�)U���IJ�

P2.­*lßn��G2¶Éý���ö“Z2-classification” Ý� §¨��Â�U���

P3.·p*¡)¥�©��G2 pn�Îö)*�n'�n��0��nTU�GOÞ Ý� §¨��Â�U���

P4.�Eä^ö²È­*lßnqÚnö�Eä^�Ω�¥�dæ �È ���/o0U��ʱÜ�

P5.X��²ijDÞ:H²È­*lßn�¥�|���<2MN �@ L L�ÂôU���

P6.Formation process and local structure of epitaxial graphene. 6à�� B¡BÔl�àU�ô�

P7.alpha-(ET)2I3�·p*¡)|���G2��n!ãN ë� 1¤��U(ôM�

P8.e����Ê ôÛ��¯2²È6�¨2Ü­*l�����¤¯! ¦Ý 3ø��ÂôU��ô�

P9.Zero modes, energy gap, and edge states of anisotropic honeycomb

lattice in a magnetic field. �� §ø�ÂUIM�

P10. DFT���¯2­*lßnï��J��\��¥� q 45�6pUô�

P11. @ã`��G2­*lßn���ni7 � Ue�ÂUIM�

P12. $q�op¡)­*lßn�Î�OD0¥�dæ«� ), ­w°!(ÇUÈ�IJKL"

P13. ­*lßn�P°��G2��ndæ�¥&B8 �¦ í¡�(ÇUI��

P14. @ããNi(111)|J��m�H­*lßn���n¥�|� µq §ø�)U���

P15. ­*lßn�OD0ó4�n��ôÛ��¯2¯�¯!�õ( �@ íÕ�ÂUIM�

P16. 2P­*lßn��G2¥�dæ�¥&B80·$��~Þ 9� P��NIMS�

P17. Gain tunable inverter in dual-gated bilayer grapheme :L ��NIMS�

P18. Gravitational anomaly and quantized thermal transport in

graphene-derived insulators q ')�NIMS�

P19. ��B�&°©��G2Ú���nO�� µq ���ÂôU���

P20. Ú���nO��©��G2�¥ (& ú��ÂôU���

Page 18: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

17

tu��A�-J�ð±AÄÅ[W�ÆÇÈÄÉÊ��

F¦ äå�ÂÃôPUL�ôLMNKII�Ló;�

'ª�­*l����~��PwT12­*lßnOD78�¥�dæ¬Ú�O��4�«78H=¯����<

)�m�;��D¬�È�W�c�:ê*�4®=78×£200S��aS�¯Ø�c�:�Ð4�º789:2=

FW'ªiÈÚ�O��D�«�H0�®=S¿2=­*lßn >�?"�DSé�lß�à�����>ª�$

nÔ ��Î��°@4¶:��TUwT1°�­¨Ïq�qnü���¿2 K Ù0 K'Ù>ªa�ÇÈ� 1 ¾��Ï<2

igDSÆ=­*lßn�J b� K Ù0 K'Ù>ª�|�aÔ;2=b�}/×ùÔ �Ù��7mêí�½¤ÙD

SÆ=êë�ÇÈDÒ�P��Ù�;�°a¼½7g20�=q��÷��¯°Ç/�È�@o4}½<2=¨×��Ù

DÊ;1:¯Ø�¼½7g20Ç/�È�@o ]Üg��S0�A2=b�=q��÷� ä^²È�ð�ÏaS�I

gh�¯2�×gh4Bw782�&æãDCVÒb<=;H�ã`�­*lßna =*m������*ntÄ

D÷4çý��¯8�E:�}ã!ãN������Êç�·�¹�ÈP½¤4ú82=b�½¤ �b�4�

S�]�ã`�ì<2~��±P¿2: /P1¥�dæ�¶ã`O��1 �7;³;1ú��ú82=bba �

b�¯Ø1*mÓ�Ô¤E0�Þ82ú�D¬0�9'ª�MN�Æ:97�<2=

Å[®Ë¦§u�¨Ì�ª�Ë�Í�ZÎÏ�

ñ� §ø��Â�U��

ª��­*lßn¬� Á�þ�dæã1 �[1ÑK©��:9JÚ*m�Û¾8·p*¡)R���ú4ÕTw�

78H=7T� 3 ¾8�7mêí�9nã�º|a �È¿�·p*¡)Ó�Ô4çý��¯�I4­�D®£9:

2=b8Tc�:©a >Ë� 2 ¾8¥�©0 OP�¤12�·p*¡)R��Òu<2½¤1*mã`�îú��

Ú�O��4�è78H=b8T�ê*���78�Z[ ·p*¡)lß�àsn��îú��aS�½�Ú�

�Òu<2rã`a�Éýæ20ã`Áa�Ú�O���MN�\A�H=úê�õö�¯Ø�S�I7on

ï,�4mé3P[1,2]a$ñ�Êgh4rmaV2ûüa ÀÁ�¯Ø1�4ùT8H=�1�rã`a�dæA��

��qn­�È E��a�qnt�®nÉý ÒbT1:[3]=�2��<)��lm��ÊwT$Ê}½ì÷4¿2

C°·p*¡)lß�àsn�ÉýÜ �7mêí��Bw782[3]=�3�ã`a O��dæA4!e2/h"D~÷�

vÁÈ�Ú�Ü7824�¶ã`EC��:9 F1/2 ��(Ú�Ü782[4]=b8T ³E��¾8¥�©�¶ã`E

C!O��dæA�ìädæA 0S� 0�qnt�®n9n�"0ìGPa¿2=

L L

[1] K. Nomura and A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006).

[2] K. Nomura and A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).

[3] K. Nomura, M. Koshino, S. Ryu, Phys. Rev. Lett. 99, 146806 (2007).

[4] K. Nomura, S. Ryu, M. Koshino, C. Mudry, A. Furusaki, Phys. Rev. Lett. 100, 246806 (2008).

Page 19: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

18

tu��A�8ÐÑÒ�

ù� ú��)åULUL���IJKLMNK�

~PwTÈP­*lßn�ã���«�DÍ�W�b1?H=PÈ�~-9���o��¥�Êç0ã`Êç4�

¥��¤�÷:D}H�9PÈ�Êç�9UVW]Ü<2�4�«78H=~P0 2 P�­*lßna �S-dH »/�

÷�4 ��¡G�82H£��»/�÷�4}½�9�«78H=3 P­*lßna �Ú�»/4ôÑa1W1°�

o��¥�Êç���9I�):��ã���4´0�9�«78H=

~P­*lßna �¥CÙ>ª�ã����ã`Êç��7onï,��ÉÊ�T��Òu<2½¾P1�

¤4ú8H=*mã`wT 2T ùA;a�ã`ûüa��z�JU<2ã���4�«78�¯���KL1ª»/Dè

gÆÆ�ã���4�U�]Ü<2=b�ã����UV7 �2P¬ 3P­*lßn¯°Sw1°UVW�¯� SJ

P�¤1°�~P­*lßn½þ�JD}H�9:2=¥CÙa�(ã`ã����ã`Êç �6n®��

¯?97;³;1��Dèg24�V���*¸�¹a¿2�¥CÙa��Ç¥C���Á�<20��Ç¥C�ª

71S�wTUV1S��0]Ü<20V�(ã`�ã���4�wTU�©�P�]Ü<2b04�«78H=�Ç¥

C�UV7 �7onï,�ÉÊ�T��ig�ùADº<H£�~P­*lßnaS�M17onï,��ÉÊ¥C�

T�4�ã���0�9�«789:2=(ã`aº82U�ã��� ��§J1­*lßna �¥CÙ�ã`

�Êç�H]/�¯?9SHT789:2=(§J1­*lßna �2 ÆÀJ�·p*¡)Ù4Nt�q­*��º8

20V�U�ã���4ú8H='S(§J1­*lßna ���ã����(4�«78H=b8T�� �7o

nï,�ÉÊ�T�4~P­*lßn�ã`dæ�UVW��<2b0D»�9�°�b8D�O<2�4­*lßn

MN�12a¿2=

RAMAN SPETCTRA OF GRAPHENE AND NANOCARBON

R. Saito, K. Sasaki*, J. S. Park, M. Furukawa

�Department of Physics, Tohoku University, Sendai, Japan, *National Institute of Material Science, Tsukuba, Japan�

In this talk, starting from a basic introduction of resonance Raman spectroscopy of grapheme and single wall

carbon nanotubes (SWNTs), we will discuss the Raman spectra of graphene edge states and phonon softening

phenomena of metallic SWNTs, which are observed by the recent single nanotube Raman spectroscopy with

changing the Fermi energy by the electro-chemical doping [1].

It is important to know the structure of the edge structure of graphene, since the electronic structure of graphene

is sensitive to the edge structure. In particular, near the zigzag edge, it is known that the localized states of electron

or phonon exist which gives an anomalous behavior. Recent calculations and experiments show that some Raman

spectra are assigned to the spectra originated by the edge structure [2]. We calculated both electron and phonon

structure of edge states and found some Raman spectra can be assigned to the edge phonons.

The other topic is phonon softening mechanism in the metallic SWNTs, which is known as the Kohn anomaly

effect of phonon. We calculated the phonon frequencies of single wall carbon nanotubes as a function of the Fermi

energy positions (Fig.1) [3]. Not only longitudinal optic (LO) phonon but also transverse optic (TO) phonon show

softening or even hardening depending on the chiral angle of single wall carbon nanotubes. This results show that

the electron-phonon interaction of graphene and nanotubes are highly anisotropic in the k space around the K point.

Page 20: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

19

The anisotropy of the electron-phonon interaction comes

from the wave function of graphene. The two-component

wave function of graphene is expressed by a pseudo spin [4].

The edge state of graphene can be understood by the

pseudo-spin polarized states. The corresponding field which

polarized pseudo spin can be defined by the lattice distortion.

We call this field as deformation induced gauge (DIG) field.

The concept of the DIG field is useful for understanding the

defect states and polarization dependence of Raman spectra

of graphene edges [5].

RS acknowledges the MEXT grants (Nos. 20241023,

16076201).

[1] H. Farhat, H. Son, Ge. G. Samsonidze, S. Reich, M. S. Dresselhaus,and J. Kong, Phys. Rev. Lett. 99, 145506

(2007).

[2] K. Sasaki, M. Yamamoto, S. Murakami,R. Saito, P. T. Araujo, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Phys.

Rev. B 80, 155450 (2009).

[3] K. Sasaki, R. Saito, G. Dresselhaus, M.S. Dresselhaus, H. Farhat, J. Kong, Phys. Rev. B77, 245441 (2008).

related papers therein.

[4] K. Sasaki, and R. Saito, Prog. Theor. Phys. Suppl. 176, 253-278, (2008). A review article for the pseudo spin and

deformation induced gauge field.

[5] K. Sasaki et al, submitted.

tu��A°±AÓ[Ô¨°�

ºþ ���àU�WC�ô�JST7V4G�

L ­*lßnDÞ:9�[1�7:I4MN789:2=Z��ö2;a�Ú�O��[1-3]��dæª�

[4]�eE�UV1�/ADþ<2¥&��*nê�¹[5]�¯�9#� iÈÚ�O����«[6]S'ªa ®

=789:2=b��¿2IDþ<2­*lßn0�ª�UV1�¿Dèg9:2��n�m�)�D,Î�HMN

o�B4­*lßn��n�m�)�a¿°�2007 ��SïP����H 3 ­��®�¯2Z���n­Ã�®=DQ

��­�D®£9:2[7-9]=��n�m�)���ÙwTèH­*lßn�J RV���(wT��782b0�

¯°o:1��n;��ñn�4XYaV2b0�ä^ÓöÀ�a S¨a¿2Z���n­Ã4#�789:2b0�

­*lßn4*m�,¡®væãa¿2H£�¥&D,Þ�H��n�î½�]�4��a¿2b01 4¿2=

;H�eãä^�`Î������n6[10]0:Ø$Ê}½ì÷Dþ�gT�1:íñn�DZ�a �aV2�0

:ØJ Sþ<2=

L ®=?�­��®a ;��P­*lßnDÞ:H���n6� �WZ���n­ÃD®=�H�é[7]�­*lß

n�­Ã78H��n���nñEN4$�q�¥�-+�ì�9]Ü�1:�0:Ø:��2 robustness D�è�'

ª®=<200S�[11]�­*lßn��n$�ÏV��UÜ����ÊD�?H[12]=>Ë���n�m�)�V�a

�­Ã��n���nñEN4YV�Wó�9�;Ø�0:Øæ24¿°½���n�*nê�¹1 ��~ÞJUV

1æ201?9:H4�­*lßna b�æ2D¼MaV2b04ÕTw01?H=7T��~P­*lßn�ì�¥

�P�kÕ1;$��/­*lßn&|wT�Z���n­Ã���nko�o��¥��¯2]��S'ª���H

Fig. TO and LO phonon frequencies and broadeining as a

function of the Fermi energy for (15,0) metallix zigzag

SWNT.

Page 21: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

20

[13]=>Ë�S�����nko�o��]� ®=789:H4[8,9]��Ð0¨^�1:½a¿?H4�y¼�®=

?T�ê*a b��Ð0�S¨^�0:Øæ24�Ô789:2=

L ¼MN�#��¿H?9U]�%\�1°;�HàU�C�ô�X�Å�ª«WcYÆå�wª«Wñ�Zmn!úÂ

�UäM"W(ñ[mn!ú Spring-8"Wñ�ú�mnWUþR7�!úUS¼-\"W]^)�ÅW�¼µåÅ�ö�:H

�;<=

[1] K.S. Novoselov et al., Nature 438, 197 (2005).

[2] Y. Zhang et al., Nature 438, 201 (2005).

[3] K.S. Novoselov et al., Science 315, 1379 (2007).

[4] H.B. Heersche et al., Nature 446, 56 (2007).

[5] K. Bolotin et al., Solid State Comm. 146, 351 (2008).

[6] K. Bolotin et al., Nature online published on Nov. 5th 2009.

[7] M. Ohishi, M. Shiraishi et al., JJAP 46, L605 (2007).

[8] N. Tombros et al., Nature 448, 571 (2007).

[9] S. Cho et al., Appl. Phys. Lett. 91, 123105 (2007).

[10] F.J. Jedema et al., Nature 416, 713 (2002).

[11] M. Shiraishi et al., Adv. Func. Mat. on-line published on Nov. 2nd 2009.

[12] K. Muramoto, M. Shiraishi et al., submitted.

[13] N. Mitoma, M. Shiraishi et al., in preparation.

Ó¶[¹YZÕÖ×"ØÙ¦§u�¨©��

�J \¨�ÂÃôPULUL��ôLMNKWJST7V4G�

Ú���nO��©!�7mêí�9nã"��¡ê|�Wº||��J�Æ:9MND�?H=Ú���nO��©

�$�)!��" 9nãa¿24�©�º|¬�¡ê�ä^P1|�4çý���n6D}<S�a¿°�eãS�

Iô4¿?9Sä^P1�¡ê|�4ÅH820:ؽ¤1J4¿2=��B�&°4b�©01°Ø2w Øw�Æ

:9�­¨������DÞ:9��D�?H=¯�����B�(111) 1-bilayer&° 2¾8Ú���nO��©

01°�{012}2-monolayer &° ¯Øa1W³E�9nã�12b04iw?H=b���B�&°a�Ú���n

O��©��¡ê|� �ÇÈÉÊaÏqðqn^�n&ã�)4?9:2=bØ�H�¡ê|��`Î� ��¡ê|

� �¡ê>ª�oWÉý�9�°_Ãm "��ÈùA012b0D¨.P�»�H=Z��¡ê|�4ÇÈÉÊa�

�P�`:a£�®�9:2 HgTe Ú�ÝÞa ��¡ê|��$�)��_Ãm 50nm ùA0�w1°)4?9

:2=

L ;H�bØ�H 2 ¾8Ú���nO��©��¡ê|�4�¥�î�@�2���Æ:9MN�H=�¡ê|� e

ãS�I�¯?9fghDFG1:H£�î�Ùa þ,¡4|�È $�)¯°w1°ó1:H£�I4 nm

s�t��Î:qÚn|D��2=<20È���nùAÀÁa��¥�î4$�)bc�S�wT�¡êbc�S��

0]Ü<2=b8�¯°���a�¥]��ÑÈ4WówT¨dJ+�9��)D�Æb0456782=

Page 22: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

21

Z2Ó¶[¹YZÕÖ×%�ÚÛÜZ¨"Ý�oÎJK"Þ�ßà�áâ�

Ý� §¨��Â�U���

Z2 ebÕ�Ò�a¿2$�)� 2 ¾8P1·p*¡)�¤0þC©��:9ú82 1 ¾8P1�|�0��TDÕ

Tw�<2=�? �H$ãECa�ÔÜ782·p*¡)ÙªD�þ�Ða¿2=S. eQ. ShenT�¯8Þ[1]�b�

þ�ÐwT����Ç/�È4õö��af�20:Ø�&� D1<b0a�gqí��|�4ùT820:Ø=¨

×�{��0:ØêÉÊ��G2ÍÎ1�¤4¯�¯Ø1�������þ�Ð�Ê;89:20 ���W:=¼¼

½a �HgTe/HgCdTe Ú�ÝÞ�ì<2 Bernevig T�þ�Ð[2]��×"�J��gH��DÞ:�¤12���°

×D��<2b0�¯?9 Z29nã��G2$�)0��ì~�TDÕTw�<2=

[1] B. Zhou et al., Phys. Rev. Lett. 101, 246807 (’08).

[2] B.A. Bernevig et al. Science 314, 1757 (’06).

ã°ä°�¦§u�¨©��Í�ZÎÏ�

�w ��àU�C�ô�

ã`¥��}/D�ø<2ë�Ïm¡Oº»�CÁ:H�����÷�!¿2: �����·�"�×î4¯WhÞ

782=b�×î ¨.� eE�þÞa¿24���P� S<ia¿2[1]=ã`�¥� �Ïm¡O$nÔ�

S ¬--'£T89�T��$nÔÊD�VË<2KL1}/D�Ø=>?9�Ïm¡Oº»a ºúaV1:4

�;82âb8D$nÔÊã`0�<[2]=

b�$nÔÊã` �TUã�Æ:9 Í�W�tT89:24[3]��îú����9 ÕTw�1?9:1:Ù4

�:=¼MNa ���B���G2$nÔÊã`���9�!1"¶ã`EC��G2O��dæA0!2"þCã`�j

LdæA�Æ:9�t2b0D³�9�$nÔÊã`4�îú��*;12��Dfó<�w�¯���D�Ñ<=

(1) ¶ã`EC��G2O��dæAD�$nÔÊã`4ð��a�2�*¡opnê,�ý;�nº»�CÁV�

o�êS]1PÅ9ÔDÞ:9Q£H[4,5]=¯���b8;a�èT89:1:�cH1O��dæA��°@

4$nÔÊã`�¯?9�(�782b04ÕTw01?H=b�cH1°@ �¯�J4TU¥60i�

�9:2H£��? �¨Ò�D�Æ0��T82=

(2) þCã`a�jLdæA� ���nýTU�GOÞ�1:`Î�TUlq¡®�°@�wú81:=�w���

B������nýTU�GOÞ4@:`Î �>Ë�TUlq¡®�+����nlq¡®��4ú82b04è

T89:H=b���nlq¡®� �w��$nÔj�kl��(D��H`Î�eE�ª7:°@�w1W�

¿;°Üµ0¢Õ789b1w?H=y¼$nÔjÊkl��°@D­�7W�Ê�H��$nÔÊã`w

TUV1��nlq¡®�°@4ùT82b04ÕTw01?H=½��9nã|���:9ùT82jLdæA

���) �&9��nlq¡®l�wTW2S�a¿2b04iw?H=

[1] R. E. Peierls, Quantum Theory of Solids (Oxford University Press, New York, 1955).

[2] R. Kubo and H. Fukuyama, in Proc. of 10th Intern. Conf. on Physics of Semiconductors, Cambridge, Massachusetts,

1970 (United States Atomic Energy Commission, Springfield, Virginia, 1970).

[3] H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn., 28 (1970) 570.

[4] Y. Fuseya, M. Ogata and H. Fukuyama, Phys. Rev. Lett., 102 (2009) 066601.

[5] Y. Fuseya, M. Ogata and H. Fukuyama, J. Phys.: Conf. Series, 132 (2008) 012004; in Proceedings of the 9th

International Symposium on Foundations of Quantum Mechanics in the Light of New Technology - ISQM-

TOKYO’08 edited by S. Ishioka and K. Fujikawa (World Scientific Publishing), p. 174.

Page 23: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

22

åæ`�tu��A(h-BN)CVDç�

Uå ���U�ô ~I�

L ­*lßn0 h-BN ��a�� LPF��a¿°�� 4Á�Þ+��(ab8H�Û�õö4�:� Áa�

m<2=RÜ�V�¾�V}~DÒb<(��~�Ûº|a ��W�`Î�­*lßn���¹+ï,�°4Áê"�

�SÁÎ��m<2=Ni(111) º|�­*lßn° �"�D 1.2%)Þ�9�Ni-Ni ��Êm�ÁÎ��1x1 �¤D0

2=Ni(111) |J�­*lßn° ~÷"�� 2 Æ�RV���Øé�1 Æ�RV�� 'º|� Ni ����J�÷

·��SØ 1 Æ�RV�� FCC OmÄ÷·�·��°0'�P�Êm 0.21nm a�­*l���PÊ� 0.34nm

��t9�?0ÌW�w1°@:ÜL�Î4PÊ����9:2=<t9RV�� �Ni��J÷·w<t9� FCC

OmÄ÷·Dnþ�9�°��o¡®ô�Èo�1: Ni(111) º|4DÝaV8Þ�­*lßn(h-BN)°D�m7g2

�6P1on®ñö�012=¤12`\wT��m�H­*lßn(h-BN)�~��P�å|�Ô¸�n �°���

$�4�Ô¸�n0R&D��7g2b01���H$�H 1p�­*lßn°012=

L 7T� Ni(111) Cq�½¾0�9�­*lßnrs�¯?9��o¡®$n�n­4Òb°�o¡®��È4Wó��

o*�|D4J+<2=êë�STM t��ua �h-BN rs Ni(111) |� 100nm �a£�o*��&W�¤ èT

8�¨�1 h-BN°4)4?9:2b04iw2��U�H STMtaS�"�Èo èT89:1:=

Ni(111) |J� CVDîaoJwÆU|D�­*lßn°D�m7g�ÜLP�¡�n­a NiCqDv��9�Cq

wT­*lßn°Dw3��TEM­q¡ÔJ�­*lßnDbcÅ��H|�ap°��Hb0Dde�H=

´µtu��A�©�èé"8��

æL çÕ�ÂôU��ô�

QRSTU%�

L ]� |�²È­*lßnï���¶£�¤ ê­�­�0q���ßq��;n���ï n0�9�ø782=q�

��ßq��(wTaVH²È­*lßn�¥�|� � � � fâ �*$nÔ�(�¯°�ø78��� º81:=

¨×�ê­�­���:9 b8T�+�9e�Î|��l*¡�$nÔ!�¡ê|�"4lß�àD÷� �782=;H�

b��¡ê|� Éý��nD�é�¯�i� ê­�­��Éý<2=b�¯Ø1�¡ê|� ÜLP� KÎ��©x

yzRÜ�VÜÎI�xyz0�T��eKekuléi��e�Î �¥�|��*êí��¤�ì~<2=b�¯Ø1b0w

Tê­�­�Dþ<2²È­*lßn ÜL}~Ç�½¤1¥�|��ã�ú��ÙwT�¿2ì�a¿2=

VR´µtu��A�¸�¹#º�

L �RV��D�Va?����(�É�n��ôÛ�/�n���<)��!STM/STS"DÞ:9­*lßn�D�«�H=

q���ßq� ¨.�mW�Èo�¤�ó1: %4¿2��ì��ê­�­� ÌW�Èo4�Èè�782=b�b

0 �Fermi D÷��¡ê|�4çý<2H£�ê­�­�4�����P�SF�a¿2b0�Òu<2=ê*�wT

�ê­�­�� �¡ê|��Òu<2UV1É\|�{A!LDOS"4çý��q���ßq�� �¡ê|� çý�

1:=;H�STS �<)��� �¡ê|�� LDOS �CÁW|:��)4çý��q���ßq�� b8 çý�1:=

;H�Â[��¤D�Æ­*lßn�a ��É\�¤�Êç�H��1�¡ê|�4 �78H=7T��­*lßn�

PÊ�GOÞ�S��782=þCm�ê­�­���¡ê|���:9 ¥�-'£4�«78H=

nR´µtu��A�êÇ�8��

L ãMN��:9 �²È­*l���WÔ¸�n4 3 ¾8rýþ�¡�}�)D �<2��RVa¿2ÇR

V~�!ACF"4�¿2Ó·�IJa¿2=ACF D��<2²È­*lßn �ê­�­�0q���ßq��ðÛ1

ÍÎg�¯2Sðl1��¤DSé�ê­�­�a �@:@ã�GOÞ!J0~103 K"�¯°��¡ê|���n�@

ã)*�¹�D����)*�¹��n �WT:�@7DSÆ � dæ¥�De�H@ã/}@ã�GOÞ

!J1~10-1 – 10-2J0"�¯°�Î���0�9�¯8k8�²È­*lßn þC�ã�Ó�¸n�DSÆlßqã|

�01?9:2=;H�²È­*lßnÊfâ²È­*l���WÔ¸�nÊ� ¶:}@ã�GOÞ4p:9:2=

Page 24: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

23

�A4�Á<20Ô¸�nÊO¡�n­,A4�Á��20 K ÀÁa SU¨��n©01°�lßqã�CÁW�Eã

PA/012b04è�78H=ACF D����9�²È­*lßn�¶��¿2��CDp°Ä20�²È­*l�

��WÔ¸�nÊ�¥�P�GOÞ4J+������A 1200�a9nã�ä^½�DÒb��¯8ÀJ��Aa²È­

*l���W�¡�}�) ä^|��12=b�¯Ø1ä^-9nã½�ªDa �lßqãD�Ʋȭ*lßn/²

È­*l���4rýþ1Ô¸�nÊ�GOÞ�H£���n­*�|�D ���ã4UV1ã`��D»<=

[1] T. Enoki, Y. Kobayashi, and K. Fukui, Inter. Rev. Phys. Chem. 26, 609 (2007).

[2] T. Enoki, K. Takai, Solid State Commun. 149, 1144 (2009).

´µëìtu��A�í�Ä©�#ºÄ-�îtu��A¸�¹�-�ïð�

� ��ë� ����_ ����_L�ULUL���IJ �;���

­*lßn�½¤�¨Æ0�9�ê­�­�¡ê�¤��:9lß�à�����aigD�H1:Éý¥�|�

!�¡ê|�"�çý�$�)D¨�ªWJ¼2�(¥�|�{A0@:��n;��ñn�4�Ð5z78[1]�­*

l���a STM�¯°ç¢789:2[2]=;H�ÙÈo¶��ê­�­�¡ê�®�¬Î��¡ê��� -+a;

��ñn���n4õö&ü�)4°@ãD�ú<2b0S­*l���a®=789:2[3]=Z[ b�ê­�­

�¡êDe�H��ndæI��0¯�c��V�~ÞDêú<2H£��ÀÁ� 2 Æ��¡êÇÞ©� D��£

9���H=

QîCNTGñòó%ô�(õö%÷'(P�3��tu��A´µøùA FET��Vîúì®sZû´ç��üý3�þ��#�´µëìs�rtu��A FET��Qî²ÈqÚn �ôP1+ô×îa �¡ê�t¸�ê4Ã?9�;:o:1��ndæ½4ùT81:=¯bay

¼*��UL0��a�Ú��q¡® ��²ÈqÚn0�9í�Ún²È�ð�Ï!CNT"D KMnO4v���<b0aR

V��42V���·�78CNT4bë�r:9�Ë2²ÈqÚn[4]D Þ���£9 FET�¤ �����H=

VîGeim T�×îaïq;nCqJ�O��H­*lßnD��Jq�ರDB�)0�9�¡�n­��>�?

|²ÈÎ�qñ�D�Æ­*lßn �����H!� 1(a)(b)"=7T��STM �¯°b�Î��¡ê�(¥�|�{A

çý���D����O���¹�nD ��ã`D-+<2b0aÎ��¡ê�Éý¥�Ç���¯2 Aharonov-

Bohm�»/���D�Æã���»/��«����H!� 1(c)"=

y�b8Ta(:ã����D�Æ GMRV�¬�Î��¡êÉý¥�06�)m�mn¥���GOÞ�¯2¤Ei

ÈÚ�O��1 �c�Ú�Iú���èD�Ñ�9MND�Ø5�a¿2= �

[1] K. Nakada, M. S. Dresselhaus et al., Phys. Rev. B 54, 17954 (1996)

[2] Y. Niimi, T. Matsui, H. Fukuyama et al., Phys. Rev. B 73, 085421 (2006)

[3] J.Cervenka et al., Nature Physics (4 Oct., 2009)

[4] D.V. Kosynkin, J.M.Tour et al., Nature 458, 872 (2009)

(c) �WÊm��4UV:(80nm/20nm=4)²ÈÎ�­*lßna�ã���»/��uÏ=�:�-4»/¶X=

ã���â

Rxx

©�� �ª«¬�

(c) h/e

­ �®(a) ��Jq�ರDB�)0�H­*lßn��¡�n­Ò|�Ô�=(b) ­*lßnJ�½�78H²ÈÎ�qñ�=

¯°±²R³´µ�

²ÈÎ�

(a) (b)

¦§¶·¸�

Page 25: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

24

���¦§u�¨©�ª%�ÚÛÅ[W�Æ�

L q� ��M�

JÚ*m�·p*¡)¥�4dæ�´�a¿2*m�,¡®¥�dæã4(�Á�¿2�-(BEDT-TTF)2I3!fâü�

IJ"aêú�H[1-6]=

ÀÁ4�b�IJ��G2½¾P1¥�dæ�´1Ïa¿2=

!1"1 Æ ¥�����AÊç�èT82=1.5GPa ÀJ�� Áab�IJ�¥��� ò0� �A�Êç�1:=

Z�wT 4K ;a! 2 i� 1 ùAa¿2=b�¯Ø1� 2 ¾8IJa ï����D�Ã<2b04U3a¿2=¯b

a� �¯Ø1��íD�Æ�wDè2H£� 1 P¿H°�¥���(ï���� RS)DèDS20��:Hb0�):

�Aa£aÚ��� h/e2=25.8 k�ªD�Ú�Ü<2�a¿2[5]='Sܵ1� b84S�I�A�¿;°¯T1:0

:Ø3êa¿2=b84*m�,¡®|��¥�dæ�½¾a¿2

!2"+,qq�A n��A]Ü4 n � T 2�>Ø�Sb�©�½¾a¿2[4, 5]=

!3"PÊã�����7:ú�4èT82=*m�,¡®|�a ã`Áa·p*¡)7�n��÷·� n=0 �*nt

ÄD÷!*mÓ�Ô"4E�çý<24�*mÓ�Ô*ntÄD÷�KÜA4ã`��Ï�9JU��Fermi D÷a�|

�{A4JU<2b0aPÊ×%�dæA4(W12�a¿2[6]=b8 mq����[7]0�ÚP�¯W¨^<2=

¨×���W(ã`a ��ni7�¯°��4 B-1exp !g*�BB/2kBT" �>Ø[6]=

*m�,¡®¥�©0�9 ­*lßn4U]þ�a¿2=�w��­*lßn ­*l���D¨P¡G��H½�

IJa¿2=¯8�ì�9�$�)1*m�,¡®¥�dæã �-!BEDT-TTF"2I3!fâü�IJ"4S¨a¿2=>?

9�b�IJDE���9*m�,¡®¥�dæã�I�4�¿<2b04XY782=

[1] A. Kobayashi et al., J. Phys. Soc. Jpn. 73 (2004) 3135.

[2] S. Katayama et al., J. Phys. Soc. Jpn. 75 (2006) 054705.

[3] H. Kino and T. Miyazaki, J. Phys. Soc. Jpn. 75 (2006) 034704.

[4] N. Tajima et al., J. Phys. Soc. Jpn. 75 (2006) 051010.

[5] N. Tajima et al., EPL 80 (2007) 47002.

[6] N. Tajima et al., Phys. Rev. Lett. 102 (2009) 176403.

[7] T. Osada, J. Phys. Soc. Jpn. 77 (2008) 084711.

opÅ[�¾�Â��×%�ÚÛÙ�8ÐÑÒJK�

�� úõ�Ã0UL C�I�LMN\�

L � 2 ¾8�þ�æã �-(BEDT-TTF)2I3 �E�Á��:9 135K a¥Cýþ ��¯2ä^�9nã½�DÒ<=b

�½� � D+�9:W0�B78�! 2GPa ÀJ�� Áaò0� �A�¯T1:¥���D»��¯�¨×a

O��TÈ UV1�AÊçD»<=b�©�¥�|��Æ:9 �ª�T�¯?9�,¡®�1:·p*¡)¥�©

0�9�ø782b04�ÐP�»J78�·p*¡)¥�D½¾>G2·p*¡);�n4 :9:2�4ùT89

:2=b�� �­¨����wTSçw£T89:2=

b�©4�,¡®�1:·p*¡)¥�©a¿2b0D»J<2ê*0�9�U�|Êã���4¿2=·p*¡)¥

�½þ������*m�*ntÄD÷�Ç/�ÈDÞ:H|Êã����ºÔ�¯?9�ê*�D¯W�ú<2�

4mq�¯?9ùT89:2=;H�U�|Êã���ûü��:9ã`�×÷äÊçD(2b0ab�©�·p*¡

);�n� V4å�aV20:Ø<=41789:2=

¼¼½a �·p*¡);�n4 :9:20V�*ntÄD÷�½¾�Æ:9øt�q�T�|Êã����ê*�

Page 26: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

25

��ÊwT¯!78H·p*¡);�n� V�Æ:9®=<2=;H��ã`ûüa�«789:2��ã���4�

*ntÄD÷Ê�l��¯?9��aV2b0D»<=b�©��Û�ì÷0 BEDT-TTF i��·D}H�9�

|Ê�¥��O¡�n­ �wT�89�°�¯��*ntÄD÷Ê�l�4���12=b�¯Ø1�ã`a��

�ã���0(ã`a�U�»ã���D�¨P��ø<2�Ð�¯?9�|Êã����ê*���ÊwT*ntÄ

D÷������DÔ£2�*¸�¹4èDST82b0Døt2=

opÅ[�¾�Â��×�(BEDT-TTF)2I3��Í�ZÎÏ�

�¦ j|�Â�U��

��(BEDT-TTF)2I3 dæP09nP45G�DP�H�¤D�Æi�æãa¿24�� -+�¯°*m�,¡®|

�012=Z[ �b�IJ�¥�dæ½D�½��PÊ×%�dæ��D�?9�t9:2=PÊdæ �P°õ

ö�½þ1ú�a¿2='ª�Z[ �¥6DPÊ×%�z ×%��6��ã`DP��y ×%��wG9�ØPÊOö�

��«����H=� 1 �*m�,¡®|�a���(BEDT-TTF)2I3�Æ:9PÊO���� zxD�tHê*�

a¿2=� �¨�@A�ã`D yz �|�a¼½�H`Î�O�����ã`×%ÊçD»�9:2=³E�O��

¥60�1ã`�i��Ï<2wT� 1 �¯Ø1®m¡�D<20��ÇP1i��12=�w��� 1 �i

� ¯80 ¡:<÷?9:2=b�ê*� q�D cot��p?H� 2 a�ïn®��Á�aV2=� 2 ¯°�P�

ã`�@:ûü��¹��/2, �H4?9�cot�4ª7:�a �i�S cot���Ï�H¨¼��J�z?9:2b

0�cot�4UVW120b��wT389�Wb04�w2=b�ú� �ã`D-+�H0Vlß�àD÷�÷·

�aV2*mÓ�Ô�*ntÄD÷�¯2S�a¿2=��W@ã`a dæ�°@<2+,qq4*mÓ�Ô*ntÄ

¥�¡G012Ú�EC|�4êú<2=b�0V�ã`�P��i��Ï�H{A�*ntÄ¥�4�;8�¯�¥

��P���i��Ï�Hm�ñn� 4pW0<20�Ú�EC|�a�PÊO���� zx �P��ã`0�P�

ã`0����Ï<2=¯�� cot�a¿2=�ÏTÈ lrnW)q¡�pn­�È�PÊ×%�"��ÈDwG

Hí�s�t�01?9:24�ê«í �6P1í0�ó¨ñ9:2=b�¨ñ �dæ�°@<2+,qq�È4;

Tw��ÀaW?9:2�4�u0��9:2=

L � 1âPÊO�����ã`äAÊçL L L L L L L L � 2â�Ð�q�D cot0�H­*l

Page 27: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

26

´µtu��A�©�-�"¿Àê��

Ô� �î�IJWÓöMN���

L ¨��P�­*l���ï��!­*lßn"4ê*P�YV�ODaV2b04Ñ�789À��­*lßn�Æ:9

C��¯â~Þ��ÙwT5�P�MN4Q£T89:2=7T�'ªa �væãÛÎ+ô^�¿2: ÜLP1Aî

�¯?9�²È�����IDSÆqÚn�­*lßn!­*lßn²ÈqÚn"�ODS���1?9V9�°[1]�

�¡ê |DB8<2õ(S��89:2[2]=¼MN8a �­*lßn²ÈqÚn�¥�|��¯â¥��î½�

�ÙD¿9[3]�'ª�²È­*lßnMN�/%Dde�ÆÆ�²È­*lßn��G2½¤1¥�I�Æ:9ÏÐ

D�H=;H�Z[�MN­��®��0�9�S�IDþ<2­*lßn²ÈqÚn��G2�&dæ�,��[4]�

7T�²È­*lßn�ΩDe�H¥�dæ½[5]�Æ:9deD�H=

[1] M. Y. Han et.al. Phys. Rev. Lett. 98, 206805 (2007); X. Li et.al. Science 319, 1229(2008).

[2] X. Jia, et.al., Science 323, 1701 (2009).

[3] Ô��î, ��©¨, S¼I�L8�, 63, 344(2008).

[4] K. Wakabayashi, Y. Takane, M. Sigrist, Phys. Rev. Lett. 99, 036601(2007); CARBON(Elsevier) 47, 124 (2009).

[5] M. Yamamoto, and K. Wakabayashi, Appl. Phys. Lett. 95, 082109 (2009).

Page 28: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

27

� !����������� ������������!����#���������������!���$������ �������$����#��(�!��� ���������

K. Harigaya, AIST, Tsukuba

Nanocarbon materials are investigated intensively. In this paper, the edge-state in nanographene materials with

zigzag edges is studied theoretically. In particular, while the inter-layer interactions are considered, we prove that

edge states exist at the energy of the Dirac point in the doubly stacked nanographene, and in the case of the

infinitely-wide lower layer case. This property applies both for the A-B and A-C stackings. We also study possible

magnetic properties in fullerenes with defects and buckybowl molecules. When the number of lattice defects in C60 is

even, we obtain magnetic and nonmagnetic solutions. The total energy of the nonmagnetic solution is lower than

that of the magnetic solution. The occurrence of the localized spin is reduced for finite onsite Coulomb repulsions.

When the number of defects is odd, magnetic solutions are obtained only. The spin density reflects the symmetry of

the molecules. We also consider possible magnetic states in buckybowl molecules. We find localized spin order in the

sumanene molecule and a part of the C60.

´µtu��A�Ý�� "©�¿À�

(Ý µ��ÂÃôPULUL��ôLMNK�

­*lßn�²È�¤a ¥��î��G2+,qq�gh1 ��:9ôÑ1����4XY782=�w��­*

lßn� zigzag ���G2��niE�H�¡ê|���ú1 ��×%�@WÊç�H¥��¤D�?9�°�²

È­*lßn�¥�I��Õ��:9 �×%�ÕA4eE�ܵa¿2=­*lßn�ÕA�×î0�9 Raman

ij��G2 D $nÔ�@ADÞ:H×î4'ª®=78H4�Z[ y¼cH�­*lßn��×%�Êç�H G $

nÔ�ïl�D�è���×%ÕA�þ 1×î�12b0D»�H=b� G $nÔïl���u0�9 ;�n¤E

�¯°®l�Ü�H LO Ó�Ô4 Armchair �ªD��:9�(Ç�12��ì��zigzag �ªDa ®l�Ü��

�DFG1: TO Ó�Ô�(4Ça¿2H£�­*lßn�×%�Êç�HèH�� G $nÔïl�4Òb2S�0

�9��782=;H�²È­*lßn�¥��î0�9�qÚn|�²È+ô78H­*lßn�ã���� SdH »

/�Æ:9®=�H=$�)­*lßn��:9 � $nÔ¯°XY782�o��¥���Ï�HUV7D�Ælß

�à|4�«782��ì��²È­*lßnqÚn��:9 ·p*¡)ÙªDaUV1lß�à|�ì~ÁGT82

¤E1»/�¤4èT8�·p*¡)Ù��:9UV1|�{AD�Æ�¡ê|��¥��î��°@4»J782=

Page 29: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

28

tu��A�l«tu��rÓØÙ� STM/STS���

�Î ��ÃÝ ���ã_L ¨�ÂU���

¼½��va �b8;aZ[4�?9VH­*l���º|�� 2 ¾8¥�©� STS �«�Øé�zigzag �DSÆ

�o¡®��G2­*l����|���«0�(ã`Áa�*ntÄD÷�¤0S�I¶°�Éý/eÉý|���«

�Æ:9de�H=�v �b8T�MNDÐ1:�ÈP�­*lßnõö���<2H£�5ÝP1ê*�Æ:9de

�H=(ã`a �­*l����|�0Ú�O����|���Î/���'�*ntÄD÷�õö���G2

�����i71 �7:ú�4XY789:2=(Ô�® SiC Cq Si |J� in situ aÎ��H 2 P��¹+ï,

�W­*lßn� STS «�D 6 T �ã`a�?H4�­*l���º|�0V�¯Ø1Õç1*ntÄD÷�¤ �

«781w?H=b8 Cq0­*lßn&|wT�@:7onï,�����¯20��T82=;H�STM ��a

j°iKH²È­*lßnO��ú|S®=�H=

Edge states of epitaxially grown graphene on 4H-SiC(0001) studied

by scanning tunneling microscopy and spectroscopy

AGrad. Sch. Sci., Hiroshima Univ., BHSRC, Hiroshima Univ., CDep. Phys., Fudan Univ.

M. YeA, Y. T. CuiB, Y. NishimuraA, Y. YamadaA, S. QiaoC, A.KimuraA,

M. NakatakeB, M. SawadaB, H. NamatameB, M. TaniguchiA,B

The edge properties of single layer graphene epitaxially grown on 4H-SiC(0001) have been extensively

investigated with scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) at the

temperature of 78K. We have observed the armchair- and zigzag-type edges of single layer graphene at the step edge

of partially graphitized 4H-SiC(0001) substrate. Super-structure possessing the ( 3x 3)R30¡ periodicity with

respect to the graphene lattice has been found in the vicinity of graphene edge, which is similar to the case of

graphite edge [1] [2]. And the atomic-structure-dependency of the localized electronic states in the vicinity of

different types of graphene edges has been directly observed by means of STS. The electron-doped edge states at

zigzag-type edge shows double-peak shape in the STS spectra, which indicates the lifting of degeneracy of the edge

states due to the substrate effect [3]. This result should be a substantiation of the existence of the edge states of

epitaxially grown graphene on SiC substrate, and the local magnetic properties of graphene edge should therefore be

attached with extra importance and attention.

[1] Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Phys. Rev. B 73, (2006) 085421.

[2] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Phys. Rev. B 71, (2005) 193406.

[3] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto and

A. Lanzara, Nature Materials 6, (2007) 770.

Page 30: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

29

tu��AÝ%�ÚÛð±A�,�JK"uäA���

�[� §¨����{î� IJWÓöMN���

­*lßn�a �$�)0 ¤12I4êú<2��4¿°�uëP�S­*lßn����¬4(;?9:;

<=��I ¯�×%!ê­�­�¬q���ßq�1 "0{���T�9:;<�a���×%DÔ£2b0

ܵ112�¨Æa<=j# �*Bnij�ú82 G$nÔDÞ:H��×%Ô����D���9:;<=

y¼��ºa �­*lßn�a�¥�|��½�D���n��ÙwT�u�H�!MÁ�"0�G $nÔ��

T<2¥�"��GOÞ0¥ã�GOÞD�þJÚª�DÞ:9Q£H�Ð��Æ:9®=�;<=�a�*Bn@

A4�*Bnñ����ñj×%0��×%�@WÊç<2!NÁ�"b01 4iw°;�H=b8Dê*0��<2

b0a���×%¬ê­�­�0q���ßq��¢��ÎDÔ£2b04aV20��9:;<=!`�±Ýâ

Sasaki et al. PRB 80, 155450 (2009), arXiv:0911.1593"

!MÁ�"ê­�­���G2¥�}Ä ���}Äa¿°�wÆê­�­���×%����n4}½<2=q��

�ßq�a�¥��}Ä ��Ê}Äa¿°�wÆ���n ]Ü�1:=ø:!Î:"�-4���n!ÇÈ=)��"�

×%Dº<=!!NÁ�"ê­�­�0q���ßq���G2���n�»E�÷:4�G $nÔ@A��:9*Bn

ñ����ñjÊç0�9ú82=ê­�­�0q���ßq�4�-ùAçý<2�a ñjÊç f£<2=

Page 31: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

30

��)´µØÙ`�¸±B½·¾Ztu��A�

qL ì��¤ULUUL�ôLMN������Ú�ôL���

�� ��

� SiC º|� �����F��¤0�9¶XP²Èl�+¡��²Èº|�4 �782[1]=¼�ºa SiC ²

Ⱥ|�(��i���:9 �782��¹+ï,�­*lßn��m���Æ:9ÏÐD�Ø=²Èl�+¡�

bi-layer ��o¡®4ðlP�ÂQ�H�¤�1?9�°�º|�i��¯2­*lßn ���:9ܵ1��DH

<[2]=­*lßnÉÊP¥i���m�AW$ÊÊç�Æ:9�,¥�ôÛ�(LEEM)[3]�¯°�tH�����

{A0 Si, C���º|�gm�UVWÊç�9:2b04�w?H=bé�¯°(�a��ma �� �{A4ª7

W�;H�o¡®lm�|�­*lßn4 �78�PÈi�4��T82=�o¡®lm� �o¡®���1×%�

b�P��-9�°�Si, C ����gW«¦0�T4¿20i�82=;H�­*lßnPÈ4JU<2�>:��m

,A4�o¡®|�Wó<2b0wT��m�H­*lßnP� Si ��gW¾34§,�9:2��4(:=�w

�14T�­*lßn� Si �g$qq eE�(:0��T8�­*lßn|���¤Èo�Òu�H¾3a¿20

i�82=y��ê*P�ÇÜ�����DQ£2b0¬�¤ÛÎ�Ê��¯â­¨��D ?H�g$qq���1

��ÐP1q®m��D�:��m��DÕTw�<2b04ܵ112a¿2=

[1] H. Nakagawa, S. Tanaka, and I. Suemune,jSelf-ordering of nanofacets on vicinal SiC surfacesk, Phys. Rev. Lett.

91, 226107(2003).

[2] Ï�ÞËJ. B. Hannon and R. M. Tromp, Phys. Rev. B 77, 241404(R)(2008).

[3] H. Hibino et al., Phys. Rev. B 77, 075413(2008).

��)`¸±B½·¾Z�tu��A��Æ�rA�

S�ñ ©��NTTIKLC�MN\�

SiCCqJ���¹+ï,��m�HÛP­*lßn�DP�¤D������¥�ôÛ�!LEEM"�¯°�tH=Û

P­*lßn �!0,0"���DÞ:HÕmñ LEEM ta UJ�è�24�!1,0"�¯â!e1,0"���DÞ:H�mñ

LEEM t� �ÛÂü�Ô¸�n4�u782=;H�!1,0"0!e1,0"��mñ LEEM t ;n�*��4G:�}½

�9:2=ÛÂü�Ô¸�n��Û�¤ ]¼ì÷a�¨×D|�� 180¡¼½<204×�¨^<2=­*lßn �

~÷¨��ÛÆ�RV��D A 6��0 B 6���ÊÖ=ÛP­*lßn �B 6���RV���J� A’6���R

V��4÷·<2 AB DP0�A 6���RV���J� B’6���RV��4÷·<2 BA!AC"DP��¤12ÛÂ

ü�F��¤Dp°ù2=AB DP0 AC DP�¤�ì÷ ��mñ LEEM t��u78HÔ¸�n�S�0¨^��

ÛÂü�Ô¸�n4DP��¤1?HS�a¿2b04»J782=b8Dç�<2H£��$�)�­*l����ì

�9�,¥�¼j!LEED"@A�¥�������Êç!IeV i�"D�����mñ LEEM twTê*P�Q£H

IeV i�0���H=ÛÂü�Ô¸�n�ì�9«��H IeV i� �!1,0"�¯â!e1,0"����ì<2���0¯

W¨^��ÛÂü�Ô¸�n4 AB DP0 AC DP�ì~<2b04»78H=;H�AB DP�Ô¸�n0 AC DP�

Ô¸�n��&�ú�82½þ��&�¤S�ì÷1Tâ� LEEMt0 LEED@A������wT�Õ�H=

Page 32: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

31

��)`tu��A>�JK���

�å m��S�ñ ©��`© ªõ�_@ ©��NTTIKLC�MN\�

L SiC �i��¯°º|�­*lßn4��¹+ï«���m<2=b��mDB8<2b0�¯°�Z[ Äßh&

|DsØ)U1 2 P­*lßnûüD �<2[1]�(1T��È< nm ùA�6�¨� 1 PW2 P�­*lßnå�

��S���9:2[2]=�wS�²È�,¡®®m�Ï�¯2«� �å� |�;Âüw¿2b0D»J�9:2=

L ­¨�����¯20��m &|aÒb°¬<W�Si�¾36�� C�«¦��S C��:'(@�S12[3]=

;H�SiCCq���Î�H 1P­*lßn $nÔ�¤�·p*¡);�nD�H��$¡l�P0�9pW=b8

T�èèD}Î<20�­*lßnå0�9 �[1�¤4��T8!Á�`G"�� �¡ê4�89�T�ï��ñ

�a¿20:ؽ¤1 |4ú89:2��S¿2!Á�(b)¬(i)�[4]=�¡ê� |DB8aV8Þ�¡ê|�SB8

aV2H£�U]�7:=

*"¼MN�¨� KMß!19310085, 21246006"��[Dù9��8;�H=

[1] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi, Nanotechnol. 20 (2009) 445704

[2] M. Nagase, H. Hibino, H. Kageshima, and H. Yamaguchi, Nanotechnol. 19 (2008) 495701.

[3] H. Kageshima, H. Hibino, M. Nagase, and H. Yamaguchi, Appl. Phys. Exp. 2 (2009) 065502.

[4] H. Kageshima, H. Hibino, M. Nagase, and H. Yamaguchi, Proceedings of ICSCRM 2009, Nürnberg, Germany.

�.(a)e(c) ­¨�����¯?9»J782 SiC(0001)Ja� 1 P­*lßn��mæù�¨Ï=(d)ö(j) ê*P� 1 P­*

lßnå0�9�«782���¿2(b)À�����¤=(d)ö(g) ��¤a sp2�Î4�89:24�¯8À�a �8

9:1:=

Page 33: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

32

��)`tu��A�©�#º���

! ¬�­q ®��ª� ±õ�ÂÃULIMN\�

� SiC!0001"Cq��i��¯°��¹+ï,��m7gH¨P�¯âÛP­*lßn����¤0¥�|��Æ

:9�ó4�n��ôÛ�!STM"0äAi�j¥�ij!ARPES"DÞ:9�tH�Dde<2=õö �¤UL�

q쪫�­��®aOD78HS�DÞ:H=OD��U�a}¯��(�É°�a 600�ùA�+��9S�I

D¾37gH�é�«�D�?H=1P�¯â 2P­*lßn� KÙ>ª� ARPES«�a 1¼�¯â 2¼� ��$n

Ô4�«78�õö�):ûü��H°�U¨1¥7�­*lßn4 �789:2b04ç¢78H=1 P�`Î�

Dirac Ù��Î�����!ED"4 0.4 eV ùAa¿2b0��igwT��8�¯°�������,¡®4¿2¯Ø

�è�2b0�;H STMt� 6×6��¤4�u782b0 �b8;a� SiCJ­*lßna�®=Ï0¨^�H=

¼MNa � SiC CqDÞ:9:2�a��o¡®{A�¤×4çý<2b0¬�SiC 0�&|�çý4¥�|

��@�2����4SH820b�a¿2=�o¡®� ­*lßn�¯°�í�<¡�J�s�89:2b0D�

STM�uaç¢�H=�o¡®���×%0�×%a� KÙ>ª�$nÔigD ARPES«��9���H0b��

½�lß�àñ=�wT EDa�}/Úi�I4��o¡®��×%a):b04�w?H=b8 ��o¡®�>ª

a�gh�¯°���¥���UbÀ�ù4ÌW1?Hb0D}H�9:20��T82=;H�eK×%� ARPES«�a

���$nÔ�ñ®qí$nÔ4�«78H=b8 6×6 ��¤�Z"�=)���¯2 K ÙwT�gh0�9MÕa

V�1 P�­*lßn4&|� 6×6 ��¤�7onï,�Dö-9:2b0D»�9:2=¨× 2 P�õöa ñ®q

í4(T8��6×67onï,�4¶:b0D}H�9:2= �

tu��A�)*�8��

»ñ "��ÂôU���

³E�ä^��G2TU}ã *ntÄ}ã0�9èT8�¯�!ãN�UV7 lß�à�����J�|�{

A��Ï<2=¨×�!¥�!0dæ!�Ê�������,¡®4`:IJa �¨.�TU}ã4*ntÄ}ã

�íwTUVW�8�@:!ãNDSÆb04èT82=­*lßn�$nÔ�¤ !¥�!0dæ!4�<2NE�`

�,¡®�©a¿°�b8�E:½¤1!ãND�Æ=bba ­*lßn�TU}ã��<2'ª�MN�:WÆw

Dde<2=

¨.�ÉÊi�DS?Hã`�ì<2­*lßn�¥�~�D��<2b0a�]����ã��!ãþ�¥6"0­*

lßn�Ê��GOÞDè2b04�Ë2=� ~�ab8D��<20�!ãN ÇÈ�ZÈ��Ï<2b04»78

2[1]=b8�¯°�­*lßnJ�~�¥64��ã`0&W��1ã`i�D�Ò<20:بÂ��t4æw

82=b8 ½��m7����D�H1:� $nÔ½þ�ú�a¿2=;H­*lßn4DP�H�P­*lßn�

�:9 �PÊ��GOÞ�H£�$nÔ�¤4~P0���9UVW]Ü<2=bba �P­*lßn�}ã!ã

ND���¯�PÈÊçDÏÐ�H[2]=~P­*lßn�!ãN lß�à�������È0�9·�¹�È01

2��ì��2 Pa ìÈ����)�1°�±�����a�½¤ ª7W12=2 P­*lßn�!ãN ��P

­*lßn�$nÔ�¤ ~P;H 2 P­*lßn0ô!1�i©�i�aV�!ãN ¯8k8�µaº782=

~P���i© PÈ4�È�S���(çý��b8�¯?9PÈ4²È�S�0���9UV1}ãD�Æb04

»782=

[1] M. Koshino, Y. Arimura and T. Ando. Phys. Rev. Lett. 102, 177203 (2009).

[2] M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007).

Page 34: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

33

tu��A��r¨[Ó[A��%É�Ûú×ÎÏ�

$ñ k¨�àU��

Ú�ÝÞô�³E�væãÛ¾8©a �:��2 Kohn����H£�6�)m�mn�#��<)���¥�Ê�

GOÞ�4ú81:b04èT89:2=<t9�¥�4�³�JÚD�é$nÔ4VI�a¿8Þ�ܬ}/4�

GOÞDFG��jL~� ¯�ܬ}/�(D�t2b0�12wTa¿2=0b�4�­*lßna �K Ù

K’ Ù�¶°a¥�4JÚ�1: Dirac ¥�0�9»2EØ=b8 ¥�4eVI��'S@:ECP1|}�·w8

9:2b0D»�9:2=¯�H£�b�© Kohn ���4ðÞaV1:©�1?9�°�6�)m�mn�#��

<)����GOÞ4ú8Ø2=êë�'ª��8Hê*a ��GOÞDrm�HÓ·�a MÕaV1:6�)

m�mn�#�������ïl�4®=789:2=

Z[ �¥����bÀA!��n0��bÀA"Drm�H

À~Ü78HÓ·�D :�³{ìäÜ�AîDÞ:9�6�

)m�mn�#�<)���ú82¥�Ê�GOÞ��Æ

:9�tH=lß�àD÷ N=0 �*ntÄD÷�¿2S�0

��¥�¬��DÔ�®�H`Î�Ô�®ÊçS�tH=¯

���N=0 wT 1 �*ntÄD÷Êl��ì~<2�<)�

� eE�`:�ID�?9:2��ì�9�N=e1 wT 2 �

�l��ì~<2�<)�� ��GOÞ�Òu<2UV1I

D�Æb0Dè��H=

b�� �N=0 wT 1 �l�a �ª�P� Kohn ���

4�����GOÞ�´éf�Î:4Òb2��ì��

N=e1 wT 2 ��l�a �¯�¯Ø1BC4&W1W�N=0

�*ntÄD÷D�iP�nþ�9:2¥�4�¿2Â�gh

ã0�9p:9�I4ÆWwTa¿20�µaV2=

b�MN �F¦äåã�ÂôU�0���MNa¿2=

[1] M. L. Sadowski et al.: Phys. Rev. Lett. 97, 266405 (2006).

[2] Z. Jiang et al.: Phys. Rev. Lett. 98, 197403 (2007).

[3] R. S. Deacon et al.: Phys. Rev. B76, 081406 (2007).

tu��A�«tu��A´µøùA�©Ð��%�ÚÛåæ©�"���� !�

�% &±�9ÞULUL�ôLMNKL ¥�¥�ôLó;�

ª�­*lßnD ?Hc�:�ñ)�m�)�����­�4®;?9�°�aSïq;n�d�2�*nê�

¹��,��Óö0�9­*lßnD,Þ�¯Ø0:Ø�Ù4¨Æ�ܵ1o�B01?9:2=bba­*lßnD

�,��Óö0<2`Î�ïq;nMOSFET1 0 ¤1°�¥��­Ã�CV��D�ض�®��·Ôñ�nä^

¥ED­*lßn�,����¸\7g2%µ4¿2=bba¯�¯Ø1ä^¥E�çý ­*lßn�¥�|��C

:9 ·$��½�UV1��D@�234»J789�°�>?9��,���i¡Ga1W�¥E;aÊÖ&ãD

¨Æ�©0�9V�D¹����<234ܵa¿2=

Page 35: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

34

Z[ ·$���Ð�ïàðñ�ï nMN��`wT�¥E�çý4­*lßn�¥�dæ�@�2��D{Aº�

ȹ��$�n·pn­îDÞ:9�t9:2=12tW~�1¥E�¤�Ó·�aºÞP1ÏÐD�ض�ä^¥E

~��×"���Ûa¿°�Ö�� sTU�¥�D<«<20<2=¯�¯Ø1ä^0­*lßn04�<2é3�Ê

ç�9�­*lßn�8[�?9:H·p*¡);�nP1ig�T4 �ùAÅH82w�»�¯8k8�ä^-­*

lßnÊé3�`Î�ä^wT­*lßn��¥��­Ã4 �ùAÒb2w�Æ:9���H=¯���ä^0­*

lßn�TU�¢�4ó1:`Î� ��|DDJ¬�9S¥��­Ã J���<i1¥64682H£� ��?�

Êa�TU�¢�4@WÒb?9:2%µ4¿23�¯�ë­*lßn�ä^���<2|D� ¿;°Êç�1:31

DÑ��H=»�­*lßn�,��De�9MN�ä^¥EÊa682¥6�o��¥�ÊçS����ä^0­

*lßn��Îé3�~-9�V�½4UVW¤123DÑ��®=�H=

tu��A%�ÚÛ6��:�ÎÏ�JK�

�L ���'qUªò±Ü�

�dæã0�Eä^0��ÎDO20��Eä^�)���ì4�('(�ª�4�-2b04èT89:2=

b�0V��Eä^0�9­*lßnDÞ:H`Î� �¯Ø1ª�4ÒV2�w ����H820b�a¿2=

�8�8 �~P;H 2 P­*lßnDe�9�Î78H 2 Æ��dæãÊ�682�dæ¥6�¼&í���9�

tight binding ª��¯â tunnel Hamiltonian DÞ:H�ÊD�?H=¯���~P0 2 Pa ¼&¥6���A�

¯â�ÎÊé3Êç4�P�¤12b04iw?H=~P©��:9 �¼&¥6 �ÎÊé3���9ÑÈ�ÈP

�Wó��¯�½¾P1m7!;��ñn�m" ��A�}�Ï<20:Ø clean1�Eä^�`Î0����4ùT

8H=�w��2 P©��:9 ¼&¥6 �A���9~��]Üg��»/P1»2E:4ú82b04iw?H=

b�¯Ø1»2E: �2 P­*lßn�*mW�,®væãP1$nÔ�¤�Òu<2S�a�y�¯�ÍÎ1Ò��

Æ:9å¾<25�a¿2=

tu��A�6��:�ÎÏ�

9q Û/�(ÇULUL�È�IJKLMNK�

>Ë��dæú���G2�ìÐP�� V�£9ª7W��dæ0�ìÐ ;?HW�T�1:S�0��T89V

H=�w��~P­*lßna 2 Æ�ú�4,Î<2��4¿2=­*lßnbãD�dæ��H0:Ø®= ;

¡1:4��dæª�D �Þ�)���ìD~P­*lßn�­Ã<2b04aV2=b�`Î��ìÐPê 

+l®n4Òb°�qnÔñ��l}Ä4�|}Ä�1205«789:2=;H��P­*lßn�`Î� ��

ìÐP XYaV1:S���o��¥&�¯2+,qq{A�!@o;aÊ�¡"UI1]��¯?9�>Ë�

�dæª����Då�<2b04��012=Z[ �b�¯Ø1b0D�P0�9�~PW�P­*lßn�q

�à�Ä���dæ¥ED�$�H�¤DOD��ª��dæ¥6DÍÎ��tH=~P­*lßna ��dæ¥

60¯�o��]�D�«�HS���¯��AÊç4 "short and dirty" �Î��Ð0¯WÎØb0wT��ìÐP

4XY782$q�op¡)�Î4êúaV9:1:0�Ð78H=;H��P­*lßn�Îa ��dæ¥6�

�AÊç >Ë�ª��Ða MÕaV1:»2E:D»�H=b�»2E: �o��¥&�½¾�Òu<

2��4¿2b0DÑ��H=7T��~P�P��×a��dæ¥6468×£2�A4o��¥��Êç<2b0

DÏ�1W�«�H4�b8 �>Ë�ê*a ;?HWèT81w?Hú�a¿2=

Page 36: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

35

tu��A��%�ÚÛ°±AÍ�Z²�

_�L ��Ý� §¨��Jerome Cayssol�¿¼L Åõ�Â�U���

L ��nTU�GOÞ!SOI"D�Ã�Ã8H­*lßn Ú���nO��D»<b04»J789:2[1]=Z[

­*lßn�Î��:9¥C[2]0��n��î��G2 SOI �D�tH=­*lßn ��n� z �iDÅç<

2¯Ø1 SOI!À�a �uP0�<"0��Û�}½eì÷�ÀË<2 Rashba SOI DSÆ=�? ��n� z �i

DÅç�1:=Æ;°��uP SOI0 Rashba SOI �Î<2=

L o��wT�7onï,��¯°��Î|�Éý�H��n� z�i Sz!­*lßn|D xy|0<2"�O��64�

Ò782=þC©a�Ú���nO��© gqí��|�0�Þ82��Éý�H��n6D}<|�DSÆ=b80

�Î|�Éý�H��nO��6��TDøt9�W=gqí��|� õö���øÀ789:2|�a¿2=¨×�

�Î��:9 ·p*¡)¥� o��wT±¥7onï,�DFG2¡Ga¿°�--'£2b0 S��a¿2=

>?9�Î|�Éý�H��nO��6 çý<2S���Ç/�È �Î|�øÀ 789�T��gqí��|�0

¤12=

L �Î��G2��nO��6 o��¥��¯°¯�UV7D%V;aÊ£9B8<2b04��a¿2=;H��u

P SOI0 Rashba SOI��ÎSè�782=<iUV:7onï,��¯?9OT8H pn�Î��:9 Rashba

SOI 4bca¿2=Æ;°�Rashba SOI DUVW�9:W0��n6 UVW12 %4¿2=nn �Î��:9 b

80Z� %4èT82=­*lßn�Î��G2��nO��6 b�¯Ø1�Á1»2E:DSÆ=

L ­*lßn��G2 SOI ª7:�a�­*lßn0�-�¤DSé�wÆUV1 SOI Dþ<2©a¿2 HgTe Ú�

ÝÞ��:9�Î�Éý�H SzO��6Dê*P��«aV20XY782=

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

[2] A. Yamakage, K.-I. Imura, J. Cayssol and Y. Kuramoto, Eur. Phys. Lett. 87, 47005 (2009).

tu��A´µèé�"#"¿À�Á�

�q )��ÂÃUL�|^�MN\�

­*l����~P°a¿2­*lßn �ìÐPR�a¿2·p*¡)lß�àsn4dæDÚ?9�°½¤1I

D»<=ÂrîDÞ:9ïq;nCqJ�ð>GH~P­*lßnDÛÎ+ô<2b0�¯°�­*lßn²È�¤D

OD��¯�Ú��îú�D�«�H=¥��q®­*lp�î0®*¨B�¡�n­�Í(Î�g�¯°�O��$�

V��~¨Ú�Ô¡��ÛÜÚ�Ô¡�DOD�H=~¨Ú�Ô¡���:9��a;nt)¹n��o��¥�W®�

�Ôñ�n¥�ÊçD«��H0b��)�mnÏm¡��Ô0)�mnt�qÓnÔ4�«78�­*lßn~¨¥

��*nê�¹0�9/O<2b04ç¢78H=7T�ÛÜÚ�Ô¡���:9ÛÆ�Ô¡�Ê��ÎDB8��;n

t)¹n��o��¥�ÊçD«��H=¯��ùT8H Coulomb Stability Diagram 4Ô¡�Ê��Î�@7�

¯?9]Ü<2��4�«78H=¨×���Ê ôÛ��¯2É\�E2ÜîDÞ:9­*lßn²ÈqÚn�¤DO

D�H=����G2dæA��BWe� 4�«78�dæ�,¡®4 �789:2b0D»J<2�DùH=

Page 37: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

36

Vtu��A�©Ð���

�» ¨� ABCE�9� P� AE�S.LiA�9q Û/ DE

�IÓ�� A�|}M B��M C�(ÇUÈ�IJ D, CRESTE�

&°­*l����­*lßn ¼JP�$nÔ�,¡®41:=úý­�789:2��¡�n­�*nê�¹0�

9�~Þ¿r� 'ܵ�æ2a¿°�IDC�wTå¾<2%µ4¿2=b8�Æ:9�&°­*l����­*

lßn�o��D�tH=o��¥�-+�ì<2­*l����,���¥&�)q��n­mDù2b0���

��1.5V/nm�@¥&D 2P­*lßn�-+�$nÔ�,¡®�æÃDõ(H=

&°­*l����,��D SiO2�(Ô�® Si CqJ

�w3îa>\7g�Ti¥E1Tâ� Al¥ED¥���

�Ój0ä^ql�slîa ��H=Al ¥E ­*

l���J�� �<2�S��T��­*l���

�,��0 <i19n|�012=b�H£�Al ¥E

0Ô�® Si Cq ¯8k8&°­*l����ì�9�

�¡®¿2: Ú��o��¥E012!� 1"=�¡®o��¥�Dó-<20�&°­*l������ O��dæ�

¥�dæÊ��°Ä��EØqn�7�*½D»������)4�-2=7T� Si Cqo���¥�D]�20&°

­*l����,���¥�|�4]�°�����)4ïl�<2=b�ïl��UV7wT�¥÷�_ÃmDæV�<

b0D<=�H=��¯¯ 1.2nm�¥÷_ÃmDæ���­*l���°Èpa<i�¥&D½¾<2b04�w?H=

7T��2 P­*lßnDÞ:9¥&�*nê�¹DOD�¯�C�¯!0dæ����ÕDõ(H=$¡)o��

0�¡®o���-+<2¥�D�Á�9UV1¥&D-+<20���)���JU4�ú¯W�«78H=b8 �

o���¯2+,qq�A�]Üa MÕ4Æw1:ú�a¿°�¥&B8$nÔ�,¡®0�9MÕaV2=b��Õ�

H£���A]ÜD�«��¥& 1.5V/nm��:9! 0.15eVùA�$nÔ�,¡®4çý�9:2b0Dè��H=

tu��rÓ�l«tu��A�8пÀ" Dirac©��

mq î��y� U�� �Å Æ�� Ue��q µ��ÇÈ É��ÂUIM�

L P|þ�æã ��-(BEDT-TTF)2I3 ��:9 2 ¾8 Dirac ¥�©�DP©�½¾a¿2U�PÊã���4�«78

2=­*lßn��P©a¿2­*l�����:9S�õö�aPÊ4Ìà��U1|�ã���4¢Ã�1:¯Ø�

��HõöDÞ:Hê*�¯°����U�PÊã���4ú82b0Dè��H=�w�Uã���4 Shubnikov-

de Haas!SdH"»/4è�2Ú�ECÀÁ�ã`aSú82Ù ¨èþ�æã0¤12=­*l����PÊ�Î

40meV 0eE�UVW 3 ¾8©�vä^0�9aØ%µ4¿2=3 ¾8ÇÈÉÊ��:9�K ÙªD�¥�$nÔ V

I�PigD�Æ4�H ÙªD���$nÔ 3 ¾8P�S Dirac R�P1� igD�ÆÙ4ܵa¿2=��

Dirac �H£�¥�4 SdH »/D»<�:ã`wTÚ�EC|��Ã2H£�ê*a Dirac ���Uã����

¥�� SdH»/4ÜÊ�Hã���4�«78H0�µaV2=

L ­*lßn 10 PùAwT12�&°­*l���D FET V��+ô�o��½�ã`ÊçD�tH0b��

FET V����4EU�12o��¥�!¥CÙ"4ã`�J+�E:òó*mwT 10V ÀJ]Ü<2b0D�«�

H=PÊdæ4ã`aJU<2Uã���0���ã`a PÊiE~�4UVW1°o��¥`4_ÃaV2P

ʽ¾m4ª7W1?H0��20�+,qq4&|�Ë�>GT8H�0�9¥CÙ�ïl�DMÕaV20�

�T82=

Back gate(doped-Si)

Back gate insulator (SiO2)

Thin graphite filmsource Drain

Top gate (Al)

Back gate(doped-Si)

Back gate insulator (SiO2)

Thin graphite filmsource Drain

Top gate (Al)

� ÌL Al�¡®o��>V­*l���¥&�*nê�¹=L

Page 38: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

37

tu��AË�Æ�Ó%�ÚÛ��$%�&�

*)�� �#���#��+��#�������������$����!�������������#���+��$��!���$����,������� ��-�

÷Î +¨�¼È �ø��Í@ �å��� )��JP$�ÔÎ�DKlßq�Ï

�É¡UL�SUNY$¡hm�ÐÎ�qq^²¤�ULÏ�

+¡ïð­*l���DÞ:9�B�)mÑrîaùT8H 2P­*lßnÒ��Ti/Au� 2����«�Þ¥ED>

G9�2 ��Ú�Ô¡�0�9���ã�dæ��«D�?H=F8T ;a�ã�dæê*D�?H0b��b8;av

æã�Ú�Î�¬Ú�Ô¡��9�«789:2�¥�ÇÚ����¯2dæA�T�4�«78�Ú���ûü�UV

7Du�<2b04aVH=;Hb8T�ã�dæ� �l*)¹��¤DS?Hã���4�«789�l*)¹�¾

8��ÊD�Øb04��a¿2=;H�2 ��Ú�Ô¡��$¡)o��¥EDÞ:9�b�l*)¹�P1ã�dæ

�o��¥�ÊçD�«�H��Á���»<¯Ø1�7:ú�4ç¢78H=dæA�T���i �*mã`

�ì�9ì÷a¿24�D¶XP��T:a:20��T8���?HUª��)�Êm òó¶Xa¿°�o��¥�

�ì�9Sò0� S]01?9:2=y� b�¯Ø1ú��ì<2¯°Í�:�ã`Óâ��AÊç���9�Ê

D�:�·p*¡)W7�n�0��H�Æ:9�CfD�Ø=

Y.Ujiie, S.Motooka, T.Morimoto, N.Aoki, D.K.Ferry, J.P.Bird, and Y.Ochiai, J.Phys.:Condens.Matter 21, 382202,

(2009).

� �

� � ��

� �

� � ��

� �

� � ��

� �

� � ��

� �

� � � � � � �

U P S W E E P ( B G = 0 t o 5 V )

� � � �� �

� � � �� �

� � � �� �

� � � �� �

� � � �� �

� � � �� �

�� � �

Page 39: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

38

��)�.e/�)��"#3�tu��A�¿Àê�

7q �å�ù� ú��)åU���IJ�

­*l����~��Pa¿2­*lßn �(:V/AD»<b01 wTcðvæãÓö0�9XY789�°�

�[1OD×î4��789:2=y¼Z[ �µÔPÊÜÎI!GIC"4½��PÊD��<20:ØJDÞ:2b0a�

OD782­*lßn�PÈDB8aV2�a 1:w0��H=­*lßn�OD�¿H°�$�)õö0�9 two-

bulbî¬����}~î�¯° SbCl5D�n¹�í*n�0�H SbCl5-GICDOD�Þ:H=b� GIC �U�aE£

9F�a¿°�ðl��:�o�êD �<2b0wT¼MN�ð�9:2=¾��Aî0�9 'SÀVa(§J1­*

lßn�OD×î0�9èT89:2�;¡�o�®îDÞ:H=OD�H­*lßn� �]á�HS�0ò0� ³E

�­*lßn0�-á�DSÆS�4èT8��? EPMA�¯28ViÊwT Sb0 Cl4w3�S�ç�9:2b04

èÕ�H=b�b0wT�]á�ó1:­*lßn�ì��jLôÛ�0 CCD í¸*�¯2;n�*���ÊDÞ:9

GIC wT12­*lßn�PÈDÔ��H=Fig.1 �$�)õöDÞ:H0V�aV2­*lßnPÈ�i�D»�H�

a¿2=3rd �o�ê0 4th �o�ê� GIC a �¯8k8 3 P0 4 P�­*lßn�ODN4%J�H=�w��

2nd �o�êwTOD78H­*lßn��:9 �ôÑ1PÈ�ñ°4èT81w?H=¾��]á�ó1:­*lßn

0³E�­*lßn���9o��¥�ÊçD«����D Fig. 2 �»�H=b��wT GIC wTOD782­*

lßn�� �³E�S�0�ùA�V/A0¥CS�I{AD»<S�Sçý<2b04iw?H=

Fig. 1.L OD782­*lßn�PÈi�

Õ�âOD78H­*lßn�È

q�â­q�n�;n�*��]Ü0ì~<2PÈ

Fig. 2.dæA�o��¥�Êç

J : 2P­*lßnL L Á : 3P­*lßn

� � � � � � � � � � � � � � � � � �� ��

� ��

� ��

� ��

� ���

��������

�� ��� �

G I C t r i la y e r t r i la y e r

G a t e d e p e n d e n c e o f t r i la y e r

� � � � � � � � � � �� ��

� ��

� ��

� ��

� ��

��������

�� ��� �

b i la y e rG I C b i la y e r

G a t e d e p e n d e n c e o f b i la y e r

Page 40: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

39

tu��A%�ÚÛ'()�*+�012�#�����+�#�����3

Ý� §¨��Â�U���

L �uP�fâ�uP��nTU�GOÞ�çýÁa�­*lßn ½¾P1¶Éý���DÖ<2[1]=0°�G�É

ý�)*� �ÇÜ78Hþ��n�È Ns DÈ�2b0a�w2=Ï�Þ�$ñ�Êgh $ñ���nD�*

ïð$�GOÞ �ê��nDÇÜ<24�¯8k8�|}�~-9�{êP1$Ê}½×O�D��<2b04a

V2=Kane-Mele ��[2]� �Ø"��$ñ��ê��n� 3 Æ4¿2�a�Ns=1,2,3!Ø"���n E�Ç"=J

Ú�41:`Î�Ns 4²È1T© ¶Éý!WL"��È1T}Éý!AL"a¿2=JÚ�4êP1$Ê}½ì÷D�

20�© s�¹q�!U"�12=

[1] K.-I. Imura, Y. Kuramoto, K. Nomura, Phys. Rev. B 80, 085119 (2009).

[2] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

456789:;<= ��>?�86@�AB�CDEFG�HIJKLM�

Ý� §¨��Â�U���

�ìÐP1Ú� L��:9�7onï,�eÑ4¿;°�S!±wJÚD��9"UV:$�Z��ÕP� S��1

ûü�R�4�n���9:W=­*lßn©¡0�b84�&kæ�12!)*�nW�n��"=Z2 �7mêí�9

nã!Kane-Mele ��[1]"�`Î�*ïð$�GOÞ�¯°ê��nDÇÜ�9¬20�b84�&}Ä�]�2=¨

×��7mêí�JÚ�0*ïð$�GOÞ4Ø;W$*n��H`Î� ��â�&kæ4���12=b�¯Ø1�

î½ ��7mêí�JÚ��½þ�S�a¿°�Z29nãD½¾ÁG2ÑÙ�120XY782[2]=

[1] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[2] A. Yamakage, K.-I. Imura, J. Cayssol, Y. Kuramoto, Europhys. Lett. 87, 47005 (2009).

,Èåæ-tu��A´µøùA-,Èåæ��ª�©Ð���

�È ���Ú� ¯Û��/o0�ULUL��ʱÜMNK�

ê­�­�Dþ<2­*lßn²ÈqÚn!ÀÁ zigzag GNR0N�"

�lß�à�����ªD�|�4ê­�­�>ª�Éý<2H£

lß�à������$nÔ�,¡® 1:4Ô��·�Ü(4*m0

12½¤1$nÔ�¤D�Æ©a¿2=¼MNa �zigzag GNR0�

Eä^wT12�Ω�¥�dæD�t�I�²��¯2¥�dæ½

�¦¤¬ zigzag GNR ûü4þC�m7a¿2b0�Òu<2c�1

ú��Æ:9�ÐP�uD�?H=� 1 �Z[4Þ:H��D»<=

I N�m7 2NL� zigzag GNR �����×"�aº78H�Eä^

4p°>GT89:2=¯ba ��î½�ì<2ê­�­��

D�t2H£�J�!��"�¥C�/0Á�!Ù�"�¥C�/D¯8k

�ÐâZ[4�u<2��=�×"�aº78H

ÛÆ��Eä^�Ê� zigzag GNR�I N �m72 LN �4Ü;89:2=

Page 41: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

40

8 c×t �¯â c�×t�t ê�aÝw8HÚnÔ��G2¥C�/a¿°��Eä^ûü0 zigzag GNR ûüa�-a¿2

0<2�0<2=ùT8H� ÀÁ�0�°a¿2=+,qq�Ô��n­41:`Î!E = 0"� �IN4²È�`

Î;nt)¹n� g NL ��È0�9�N L

2ö aWó�9�W=¨×�N 4�È�`Î� �;nt)¹n��í

NL �� �a 1�ªÁW=;HN � 3a �NL �� ���`Î�;nt)¹n��í N4²È�`ÎS�È�`ÎS�� c

0 c� � Êç�1:=b8 �N � 3�`Î�ê­�­� E = 0�NL �� �a�î½�°@�1:b0D��9:

2=H¡��N = 2!ê­�­��(4çý<2"�`Î� b�ECa g ����� c�2)/ 2LN 01°�Ö[�ê­�­�4�

���îú��°@�9:2=7T��E �� 0 �`ά�N 4²È�`Î��,���lp�¹qn­�Æ:9�uD

�?H=

N./0��G1'�´µtu��A�©�#º%¬�Û���

1�@L L�1Jeseph Joly�1þ&L Þ�1(& så�1(Ý µ��2Mauricio Terrones�3Mildred Dresselhaus�1æ çÕ

�1ÂÃôPUL�ôLMNK� 2National Contact Point with the EU on Nanotechnology, 3Massachusetts Institute

of Technology�

²È6�¨�­*lßn!²È­*lßn" ­*lßn0�9�I�+��²È6�¨�½þ�I�ú4XY78

­�D®£9:2=½�¯�¥�|��­�<20��¡ê�ÀË<2¥�|�4lß�àD÷ªD��ú��7T�b

��¡ê|�4ã��H<2b04�ÐP�56789:2=b8;a²È­*lßn�¥�|��Æ:9 �STM

1 DÞ:9MN41789VH4�SÕ1ÙS�:=¼MNa X ��²ijDÞ:�²È6�¨�­*lßn�½

¾P1¥�|���ÕD�P0�H=

L õö� � 3nm�3 PùA�­*lßnwT12ÇÜRV~�!ACF"�¯â²ÈqÚnDÞ:H=ê* (��

���+,-MN��VÄj_` BL-7Aa�?H=

L �� ACFõö� X��²�<)���l¡V�Ô�®

ÚÊç�¯â���H£ HOPG��D»�H=ACFõ

öa �ßTU�Á�cH� P1 ��)4�«78H=l¡

VÔ�®Ú�J+�E:�P1 ��)@A4Wó��cH�

P2 ��)4ú8��ß��)@A4Wó<2��4�«78

H=ã�«�0���wT�P1 4²È­*lßn��¡ê

��P2 4tn­qn­ÚnÔ�ÀË<2¥�|��ì~<

2�a 1:w0��9:2=

L ;H�²ÈqÚn�Æ:9S X ��²�<)��D«�

��²ÈqÚn+��EØ |]Ü�ì~�H�<)���

]Ü4�«78H=

L ÀJ�ACF ¬²ÈqÚn1 �²È­*lßnõö�Æ:9 X ��²�<)��D«�<2b0a�²È­*lßn

�½¾P1¥�|�Då�<2b0����H=

� ACFõö� X��²�<)���l¡VÔ�®ÚÊç=

Page 42: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

41

�-(ET)2I3��23 13C NMR

ë� 1¤��U(ôM, �U���

i�æã��-(ET)2I3 �135 Ka¥Cýþ�¯°9nÜ<2�Û¾8¥�©a¿2=1.1 GPaÀJ�(�Áa �¥

Cýþ4�B78�Dirac cornigDþ<2S¨$�)IJ012=¼MNa �DiracR�½þ�������ÑÒD

�«<2H£��13C NMR «�D�?H=b8;a�q�T�ã���«��¯?9���-(ET)2I3��G2 zero mode

Landau level 4�«789:24�¤E1äAÊçã����»2E: ��789:1:=¨×�ã���9 �

�ã`a ��B�¬­*lßn���@:}ã4XY7824�@ã`� Landau Ú�Ü|���æù ÕTw�

1?9:1:=;H�¥����¯29nÜ!Wigner crystallization"ªDa�������ÑÒ4 �¯Ø1]�DF

G2�w�7:=

NMR �(�ÁaS±P�¯â/P��n!ãND(öA�«�aV2Ù��:9b89:2=�-(ET)2I3 ��:9

1.50 1.75 GPaÁ� 13C NMRê*�¯°�²��ïl� K0��n"�àµN 1/T1D«��H=80 KÀÁa 1/T1

T4 ��Ï�K exponential �ª:|:WóD»��}ã �«781w?H=b8 �,¡®ñ�aXY782�

1/T1~T3 �¯â K~T 0 ¤1°���nÑÒ�þC��,¡®4çý�9:2b0D»J<2�a¿2=ã`Êç

¬äAÊçS�«781:b0wT���n�,¡® Landau Ú�ÜÒ�a 1:b04iw?H=Hall TÈwT

èDST8H+,qq{A4eE�ª7:b0wTu«�9�(������$nÔÊl�S��nÑÒ��@�9:2

0��T82=

¼MN �ª�����U(ôMN���¥¦����U����_¼©���M��(&,á�LW�U�Öã0��

�MNa¿2=

1������ ��O�����!��!��O��� �� !����������+�����������#�$����#���������#���������!����#�+��� �

�� §ø�ÂUIM�

L ã` honeycomb lattice��G2*mÓ�Ô��,¡®�fâ�¡ê|�D�@øÀ��DÞ:9�u<2=½��

­*lßn�¥�ID¯°¨.P��t2H£�ââ�°Di�¤×DæÃ�9�ÊD�1Ø=;��ã`��G

2*mÓ�Ô�çý� 4�ÊP�Q£T82=¯�� �CÁV�¶ã`a ­*lßn�ì�ó��¤×DæÃ

<2¡Ga�����*m;�°��,¡®4rWb04è�782=¯��,¡® �ã`���9ÑÈ�ÈP�»2

EØ=b�»2E: �2Æ� Dirac zero modeÊ��n�qn­0�9��782=

L ;H�©��&4¿2`Î��¡ê|��Æ:9SÏÐD�1Ø=0°�G�¶ã`��:9 �ââ�°Di�ó

��¤×�¯°��¡ê�Éý<2�����*m�|�È4�z�]Ü<2b04è�782=

K. Esaki, M. Sato, M. Kohmoto, B. I. Halperin, Phys. Rev. B 80, 125405 (2009).

Page 43: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

42

PQR\]%lÛtu��A·�Ó`�/1��©�èé"4���

q 45 AB�þÝ � AB�6pU�ô A�JST-CRESTB�

ª��ê*^��%J1 �E:�­*lßnD�£0�H�[1Û¾8IJ4OT8�ê*W�Ð�(1T�I)W

~Þ�ð~789:2=Ï�Þ�­*l���CqJ� GaN D�m7g23�¯2�á LED ���1 �Û¾8IJ

J�]¾8ÜÎIvæã�­�4®£T89�°�¯��m¸í�¨���Õ4­�789:2=¼MNa �b8T�

m�����0¯�IW��56��Õ�Ì4w°0�9���KLP1Aî�½�{Aº�ÈîDÞ:H­¨��P

1¥��¤��wT�Û¾8IJa¿2­*lßnï��J�����\0¯�F��Æ:9ÏÐD�?H=ªãP�

�3ã¶X�­*lßnï��J� 3Æ��\6��Dä����[1��D�\7gH0V��\�����DQ£�

©�P�F��Æ:9ÏÐD�H=�\7gH�� �q�íqä^¬l�ä^1 ����oÐwT 83 ;a¶X§

ºòó&9Dí$��H��D�?H=;H¯�ë�¥C{A�Ê�¯°�­*lßn0�\�Ê�¥C�/D���¯

°Q£H=¯����\6��fâ¯� %���9 �eä^8V B 6����\��l�ä^8V H6 6�

���\<2 %D»�H=;H��º��:9 :WÆw�8V�Æ:9ÍÎ�¥�|�D�Ê�®=�H=b�0V�

­Û¶X�eä^8V��:9 ��Î������@7� % �¯� s-p ¢��@7� %0�9¥C��/0�H

ÁG9��aV2b0D»��­�¶X�l�ä^8V��:9 �p-d ¢��@7� %0�9�EF ªD�$nÔ�

�¥C��/0 d$nÔI�]Ü0�/��HÁG9��aV2b0D»�H=

789%�ÚÛtu��A�°±A�5�

� Ue�mq î���q µ��ÇÈ É��ÂUIM�

L ­*lßn�¥�|�� broadening I�¯!0ÉªÜ �IMN¬~ÞJܵa¿24�b8D��ni7I

DCD�0?9�tH=~P­*lßn FET V�DOD��®��eÔñ�n���o��¥�ÊçDÂ[�ã`

×÷Wã`@Aa«��H=ã`9ìía��ni7D��ã`�ia Landau Ú�ÜD�o��¥�a Fermi

D÷DB8�H=

L 10T;a��ã`Áa �~P­*lßn½þ�vÁÈÚ� HallDEØÕå1 Shubnikov-de Haas (SdH) »

/D�«�H4�¥CÙ��G2 SdH ��)���ni7D»J<2ÛÎ�¤ èT81w?H=SdH »/wTQ

£HÉ\Pàµ$Ê 0.1ps �s�t�a¿2=Landau Ú�Ü4ÒV1:��ã`Áa ��ni7��(æ�a

V24�¥CÙªDa�(ã���4ú82b04�«78HS�����ni7wT56782¥CÙ���

��)�óG¬+n)�¤ �«781w?H=7T���ni7DUVW<2H£ 20T ;a����@ã`DÞ:9

��ã`�ê*D�?H4�Õå1��ni7 �«781w?H=b8 Dirac ;�n|�� broadening I4 20T

��G2��ni7!! 2.3meV"¯°<iUV:�àµ$Ê4 0.28ps¯°<iÌ:�b0D»<=

L CqJ­*lßn�¥�|� �¥�ö���Ô�!ripple"�¯2 Dirac Ù�ÉÊ]/�¯?9UV1 broadening D

»<0��T89:2=y¼�� ÉÊ]/�¯2Ú�4É\PD÷Ú�¯°UV:b0D»J�9�°�¥�ö��

�Ô��¯2MÕDG�<2�a¿20��T82=

Page 44: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

43

tu��A�"�"67ÓA8Z9:;%lÛ<=�>?�

�@ íÕ�ÂÃULWIMN\�

~P�­*l���°a¿2­*lßn �¯�½¤1¥�P�P½wT²È·$����~Þ4XY782IJa

¿2=ó4�n��ôÛ�!STM"�¯2MN �b8;a�+�78H SiC J� �782S�¬�ä^J���78

HS�1 4®=789:24�+,qq�¹�®W{AB8D��0<29nãJ�­*lßn��u ßra¿2=

¼MNa �ù°ú�Âr�¯°OD�H­*lßnDïq;n2Ü°J�zg�STM�uDõ(H=

L o�®DÞ:9+¡ïð­*l���!S�W HOPG"DÈ<¼Âr<2b0�¯°OD78H&°­*l���D

2Ü°J�zg�;� jLôÛ��¯°¯���á�uwT~P0i�82S�D�â��H=7T����Ê ôÛ

��¯2(7«�¬�ôÛ*Bnij�¯2»/Ó�Ô«�wT�~P­*lßna¿2b0Dç¢�H=

9nãCqº|J�OD�H­*lßnõöD STM �u<2H£� �õö�$�q�¥�D-+�9�n��¥6D

å���wÆ�(�É�a��Á�õöD·WH£� B�í�ôDÞ:9��Dõö÷·;a�æ<2%µ4¿2=

b8T��P�H£�¥��q®­*lp�DÞ:9¥E�¯â��ÔÞB�í�DOD�H=¯����(�É

!ç10� Pa"W��!è7K"��Áa�­*lßnõö÷·��:9 STM �u<2b0����H=�w�14T�­*

lßnº|�éê4z�W���i��tDù2� öT1w?H=éêµu0�9 q®­*lp��Þ:9:2ñê

��°4�ç�9:2b04��T8�b8TDëÄ�ëìº|Dù2b04y��12a¿2=

Vtu��A%�ÚÛ©Ð���©x@A"¦Ür°B1�

9� P� AE��» ¨� ABCE�S.L. LiA�9q Û/ DE�IÓ�� A�|}M B��M C�(ÇUÈ�IJ D�CRESTE�

­*lßnD��¡�n­�*nê�¹0�9ÇÞ<2H£� �OFF ���JU4S�Èa¿°�¯�H£� $

nÔ�,¡®�æÃ4þa¿2=Z[ �2 P­*lßn� 2 Æ�o��¥E!Si Cq�¯2$¡)o��0 Al ¥E

�¯2�¡®o��"�¯?9�¥`D-+<2b0�¯?9$nÔ�,¡®Dêú�H=¯�¯Ø1 2 P­*lßn

D�,���Þ:H FET ��:9�$nÔ�,¡ ®�r:0V� 10 ùAa¿?H ON-OFF � �$nÔ�,¡®�

æÃ�¯°'Ua! 300;aJU�H!T = 77 K"=OFF|���G2dæ¸í�¨�D�t2H£�OFF����AÊ

çD«��H=(�Ù!100-200 K"��AÊ篰 1.5 V/nm�¥`Áa 0.15 eV�$nÔ�,¡®4�Ò789:

2b0Dç¢�H=��!T <~ 100 K"��G2�AÊç variable range hopping�Ó·��>:�S�ID÷De

�Hdæ4�?9:2b0D»J<2=;H�b�¯Ø1 2 P­*lßn�*nê�¹D 2 ÆÞ:H�n$�¹�Dõ

O��$nÔ�,¡®�JU0��o�n4UVW12b0Dè��H=

R�������S����!��!������� ����!������������!���$������S������

:L Ã�!Songlin Li"A�9� P� AE�9q Û/ DE��» ¨� ABCE

�IÓ�� A�|}M B��M C�(ÇUÈ�IJ D, CRESTE�

Graphene is an attractive material for nanoelectronics due to its high carrier mobility and the possibility of large-

area fabrication. After the demonstration of high-performance field-effect transistors (FETs), it is interesting to

fabricate various digital logic units and fulfill the logic operations. However, due to the metallic nature, the

performance of graphene devices is still low. In Ref. 1 (Traversi e al, Appl. Phys. Lett., 94 (2009) 223312), for example,

the maximum voltage gain reaches only 0.044 in a single-gate monolayer graphene inverter. Here we report the

Page 45: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

44

electrical characteristics in dual-gate bilayer graphene (BLG) inverters. In contrast to the single-gate inverters1, the

top gate (TG) is used as the input terminal and the bottom gate (BG) serves as a specific terminal to apply the

perpendicular field to tune the band structure in our devices. The dependence of voltage gain on both the BG and

drain biases was systematically measured. Enhanced voltage gains, with a maximum value of 3.2, were

demonstrated in the dual-gate BLG inverters. In particular, a complementary p- and n-type FET pairs are fulfilled

by only adjusting drain voltage without an additional electrical annealing process1.

/��S�������������������� �,�����T� ��$�������������������!���$���� ���S� ������������

q ')�IJWÓöMN���

­*lßn�·p*¡)Ù��,¡®DrG9 �782�[19nã��7mêí�1!bé�¡ê�o��4ÚØ

Ú�Ü78H"¥ã~�/��î~�D�tH=þC1~��þr �,¡®DSHT<;/�ì÷aÔ;°�Haldane

����G2ÁÈÚ�O���Kane-Mele ����G2��nÚ�O�� ¯�ôÑ1Ï0:�2=¨×�³

E non-topological 0è1782 boron-nitride �¬ Kekule �9nã��:9S ripple o�ê`¬iN0��Î�¯°

ebÕ1�7mêí�~�!valley Ú�O��¬¯�Z~�ô"D»�ù2b04iw?H=v���Ú�Ûª]Ü

�~��9682�����6 Haldane ���`Î� :��2Ü Chern-Simons OÞ�¯°�ø78!b8

�¡ê�o����ñ��qÈBq�D�Ò<2"�© Ú�Ü78HO���dæA!Leduc-Righi dæA"D»<=b

�� ô!1��n©��O��~��S��aV20��T82=

ã°ä°Cçª%�ÚÛË�°±AÍ�ZÎÏ�

µq ��[1]��J \¨[12]�F. Freimuth[3]�G. Bihlmayer[3]

�[1]ÂôU��ô�[2]7V4GöJST�[3]Institut für Festkörperforschung, Forschungszentrum Jülich�

L Û¾8Ú���nO��© rC�|©a 9nãa¿°14T�$Ê}½ì÷1Û|�wT12�,¡®ñ�1�¡

ê|�4��ndæDÚØ=b��¡ê|� �7mêí��Åí78�© Z2 �7mêí�²n$��¯?9½¾>

GT82=

L ª��c�:Û¾8�7mêí�9nã�Ð�0�9 Bi(111)0 Bi{012}�ÛÂü���B�&°©4­�D®£9:

2=¯ba¼�ºa �&°�¹��$�n·pn­Ó·�wT Z2 �7mêí�²n$�D�����? Ú���n

O������? 9n��¿2b0D»�H=;HqÚn|�©a�$nÔ�¤D�����,¡®ñ�1�¡ê|�

4çý�9�7mêí�²n$���0@Î<2b0��¯â¯�|�4��n6D}<b0D»�H=

L 7T��?��¡ê|�D�Ê<2b0�¯°�úêP1©��G2�¡ê|���ú���D�P�Ð-H=¨.

�S�Igh4¿2©��:9S��¡ê|� �7mêí��Åí789�°F�a¿2=+�9��B�&°©a �

¯�½¾P1$nÔ�¤�î�0�9�¡ê|��_Ãm4E£9Ì:b0D»�H=b8 �¡ê|���«W×O4

>Ë�©¯°SYV���20:Øê*P1þÞD»J<2=

Page 46: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

45

3������ ��� ��3�=¬�

���GH����)8�4����� ��

<=?âüL ���ÃU���L

�tL ,Õ�àU���L

ï_L L ¤�ÃU���L

ª�L ±õ�ÂUIM�L

�kL L l�ÂUIM�

L

L º|W&|��G2¥C�/W�î�ÜL}~�t�²à)�� �7;³;1ÑÒ|�4�@�9:2=¯�9�¥

�Êgh¬¥�0���}/��Î4��2ÑÒ|���ÒW£Ç�¯Ø1eÒ�æùDÛmP��Õ<2b04�¯�

��� S�È01?9:2=ª��(ÆAVÄj¬�Ì���ñ�����#�E:�7;³;1$Êûü�(A1i

jî4r�78�¯84º|W&|��G2t�²à¡)�MN�~Þ78 -£9:2=;H��ÐP�S­¨���

���G2��&|��ø��ÔܬÑÒ|���¿r1 �ðòP1QR4¿2=b�¯Ø��úý�º|W&|��

G2t�²à¡)��MND�ÐWê*��|wT®P�p°Í(�eÒ�æùD¯°�¨P���aV2BÎ01?

9VH=¯�9�b�¯Ø1ÛmP���Q¿ ~�L�P1�¡Ga1W�¯8D~Þ�Hj���ø�¥È�þ�

·$��1 �r��SUVWÇf<20��T82=¯ba�¼MN8a �º|W&|��G2ÑÒ|���¬D�

ÆMN?4®;°�º|&|t�²à)�MN�ÐËD¿Ú<2b0D�P0�9MN8Dr¶�H=ÀÁ�®m­*�

�¯?9 15 �¼½4¿°�40�¿;°�`+?4Ç�1¾ÐD�:�y��MN�×%�Æ:9þ�Å1ÏÐ4a

VH=

¤ ¥ ¦ § ¨�

09:20-09:30L L üL ���ÃU���â -£�

09:30-09:50L L ñL ¨å�ÃU���â�(,e� ij�¯2º|�\Â�t�²à)�

09:50-10:10L L JòL L ¤�Ö_U��ô�âlß��´ñ��ÑÒ�¯2º|�\�t�²à¡)���Ð

10:10-10:30L L äL L þó��M�âState-resolved study of molecular diffusion

10:30-10:50L L (ÈL L {�Â�U�8M�â�ô,i��DÞ:Hº|�\i�� HTWØÙ�MN

10:50-11:00L õ�üö

11:00-11:15L L ÃqL L ÷�IM�â(ÆAÅ X��¯2j¥�»/ij�$Êi�«��%G9

11:15-11:30L L �kL L l�IM�â�\æù��G2i��æPº|�g

11:30-11:50L L õøL ¨��ÂU�ô�â�D&i�<2�����]��j���r�

õ_�ö

13:30-13:50L L ùñL L \�IM�âÑÒ|�t�²à)��­¨�����%G9

13:50-14:10L L UúL ªî��U��+�â�����j�¯2��&|�àµt�²à)��Cû

14:10-14:30L L ª¦L L ¨�ü~U�ô�âVÄj�ýij�¯2&|a�®m�n�/�¯â¥C�/�MN

����D�¨·��Â�

L {UVWX:Y=Z[\[]@^_8F`abcde

Page 47: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

46

14:30-14:50L L ï_L L ¤�ÃU���â�n��¥���Ò78H®m�nt�²à)�

14:50-15:10L L ª�L ±õ�IM�âGe(001)º|��G2O��Éý�¯2t�B�»/ÑÒ

15:10-15:20L õ�üö

15:20-15:40L L �tL ,Õ�àU���â�\i��¥�ÑÒ|�t�²à)�

15:40-16:00L L �oL L &�É¡U�,Î�âþ�væãi�&°�¥Ct�²à)�

16:00-16:20L L _ÁL �¨�ÂU�ô�âº|W&|�¥�|�0¥��î��Ð

16:20-16:30L L ª�L ±õ�IM�â;0£

Page 48: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

47

3������ �º� ��3�������� �º� ��3�>��

���GH����)8�4����� ���¢£���

<=?âJñL Lk��É¡U,Î�L

qåL L���ÂUIM�L

m��L#��|}M�L

��L L�¨�àU��L

L ª��þ���¥�©Óö¬²Èí�ÚnÓöa �·$��Ü^���,1Q¿00S��º|¬&|�¥�ú�D

�¨P���<2H£�CÁ4 �78ÆÆ¿2=¼}�)ï ¡®a ���¥�©&|�þ�JD:w�æ���

¯�I�D��<2�wDo�B0�9�(ýþÜ�H&|��n0�º|W&|��Á1�«Wij«�^�DðÞ<

2'c���¡)��Æ:9ÏÐ�H=

}�)ï ¡® É¡U GCOE�|}M�àU0��ar¶78��u� 34 �DÊÖît 160 ��MN?4`+�

H=�º <t9�þa��8H=�u� 7 �DÊÖ­¨��MN? 28 ��¯2ÊËWÆY¼½�18  �7�¹�

+¡ï n!Øé�u� 5�"a �:�8SÇ�1ÏÐ4��8H=

Û�iñ ��,��m�$G2c�:iña¿°�`+�9:2MN?�$¡)­*ÄnÔS�º|KL�·$��

I��þ��ãIô��Â��a¿2=c�:7��MN�4E$a9�°�exciting 1iña¿2b0DS£9�

�H=

L '�����wT¼}�)ï ¡®�H£��³�³$ÊD�:9`+�9:H¡:H 5 ��ÆY¼½?�

V. Podzorov(Rutgers University)�C. Daniel Frisbie(University of Minnesota)�Stefan Tautz(Forschungszentrum

Jülich)�Frank Schreiber(Universitaet Tuebingen)�Chen Wei(National University of Singapore) ��ã!�÷�"��

b�`Da°9ö�<2=!±áL qå"

¤ ¥ ¦ § ¨�

Q�E� F� ���b�i�

[Chair: T. Hasegawa] 13:00 Opening (N. Ueno, Chiba Univ.) 13:10 C. D. Frisbie (Univ. of Minnesota)

"Scanning Probe Microscopy of Ultrathin Pentacene Films: Epitaxy, Defects, and Energetic Disorder"

13:45 M. Nakamura (Chiba Univ.)

"Relationship between HOMO-Band and Crystal Structures in Pentacene Polycrystalline Thin-Films"

Coffee Break (14:10 – 14:40) [Chair: J. Takeya] 14:40 S. Kuroda (Nagoya Univ.)

"ESR Observation of Field-Induced Charge Carriers in Organic Transistors"

15:05 T. Hasegawa (AIST)

"ESR Study on Charge Dynamics and Distribution of Localized States in Organic Transistors"

����D�¨·��Â�

GxÙ�r©�ª%�ÚÛH�Á"-J��f�$���#���� �g�"��$���������+������#�����#������+�#��f�

Page 49: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

48

15:30 A. S. Mishchenko (RIKEN)

"Distribution of Localized States from the Fine Analyses of Electron Spin Resonance Spectra: Basics of the

Method"

Coffee Break (15:55 – 16:25) [Chair: M. Nakamura] 16:25 J. Takeya (Osaka Univ.)

"Hall Effect in Field-Effect Transistors of Thin-Film and Single-Crystal Organic Semiconductors"

16:50 H. Okamoto (Univ. of Tokyo)

"Ultrafast Exciton and Carrier Dynamics in a Rubrene Single Crystal"

Coffee Break (17:15 – 17:30) 17:30 – 18:30 Poster Preview

V�E� F� ���bIi�

[Chair: S. Kuroda] 9:00 S. Tautz (Forschung. Juelich)

"Highly Ordered Molecular Adsorbate Layers on Metal Surfaces: from Surface Science to Molecular

Electronics"

9:35 N. Takagi (Univ. of Tokyo)

"Spin state, magnetic anisotropy and Kondo effect: Iron(II) phthalocyanine on metal substrates"

10:00 Y. Morikawa (Osaka Univ.)

"Theoretical Study of Interfacial Dipoles at Metal/Organic Interfaces"

Coffee Break (10:25 – 10:55)

[Chair: Y. Kobozono] 10:55 Y. Iwasa (Tohoku Univ.)

"Development of Liquid Gated Transistors"

11:20 H. M. Yamamoto (RIKEN)

"Field Effect Transistor Based on an Organic Mott-Insulator"

11:45 S. Ishibashi (AIST)

"Computational Approach to Exotic Electronic Properties at Interfaces"

Lunch Break (12:10 – 13:20) [Chair: T. Mori] 13:20 M. Hiramoto (IMS)

"Organic p-i-n Solar Cells Incorporating Seven-nine Purified Fullerene"

13:45 H. Tajima (Univ. of Tokyo)

"Magnetophotocurrent Effect in Organic Photovoltaic Devices"

14:10 T. Takenobu (Tohoku Univ.)

"Interface Control and Light Emission"

Coffee Break (14:35 – 15:05)

Page 50: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

49

[Chair: Y. Iwasa] 15:05 Y. Kubozono (Okayama Univ.)

"Fabrication of High-Performance Field-Effect Transistors with Aromatic Hydrocarbon Molecules by

Interface Control"

15:30 T. Mori (TITEC)

"High-Resolution Transparent Carbon Electrodes for Organic Field-Effect Transistors Produced by

Solution Method and Laser Sintering Method and Laser Sintering"

Coffee Break (15:55 – 16:25)

[Chair: Y. Morikawa] 16:25 F. Schreiber (Univ. Tuebingen)

"High-Resolution Studies of Organic Adsorbates on Metal Crystals using X-ray Standing Waves: Molecular

Distortions and their Implications for Organic Electronics"

17:00 W. Chen (Nat. Univ. of Singapore)

"STM and Synchrotron Studies of the Molecule-Substrate Interface"

17:35 N. Ueno (Chiba Univ.)

"First Principles Measurement of Hole Mobility in Organic Semiconductors with UPS: Bridging Electronic

States and Electrical Property"

18:10 – 20:00 Banquet

n�E� F� ���bJi�

[Chair: N. Ueno] 9:00 V. Podzorov (Rutgers Univ.)

"Self-Assembled Monolayers on Organic Semiconductors: Characterization, Growth Mechanism, Transport

and Optical Properties"

9:35 K. Tajima (Univ. of Tokyo)

"Enhanced Charge Transports in Polymer Thin Film Transistors Prepared by Contact Film Transfer

Method"

10:00 K. Saiki (Univ. of Tokyo)

"Control of Organic Film Growth by Physical and Chemical Modification of Substrates"

Coffee Break (10:25 – 10:55)

[Chair: K. Saiki] 10:55 Y. Kim (RIKEN)

"Electronic Structure of a Carbon Nanotube on Various Electrode Surfaces"

11:20 M. Shiraishi (Osaka Univ.)

"Transport and Gate-induced Modulation of Pure Spin Current in Single- and Multi-layer Graphene"

11:45 K. Kusakabe (Osaka Univ.)

"A theoretical Analysis on Reaction Processes of Carbon Nano-structures with Metal Oxides"

12:10 K. Tsukagoshi (MANA-NIMS)

"Band-gap Modulation in Bilayer Graphene"

12:35 Closing (H. Tajima, ISSP)

Page 51: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

50

¶°B�@�·�A�

1. T. Uemura (Osaka Univ.)

"Monolithic Complementary Inverters Based on Intrinsic Semiconductors of Organic Single Crystals"

2. H. Yamane (IMS)

"Impact of Geometric Structure on Interface Energetics and Electronic Band Dispersion in Thin Films of

Pentacene"

3. J. Inoue (TITEC)

"Organic Field-Effect Transistors with Electrodes Produced from Organic Semiconductors by Laser Irradiation"

4. S. Tao (Univ. of Tokyo)

"Temperature and Excitation Energy Dependence of Ultrafast Dynamics of Photoexcited States in Rubrene Single

Crystals"

5. S. Shimizu (Univ. of Tokyo)

"Mediating Role of Magnesium Substrate in n-Type Doping of Tetrathianaphthacene (TTN) to Tris-(8-

hydroxyquinoline) aluminum (Alq3)"

6. K. Mukai (Univ. of Tokyo)

"The Interaction between F4-TCNQ and the 2-Methylpropene Terminated Si(100) Surface"

7. Y. Kanamori (Univ. of Tokyo)

"Fabrication of Highly Orientated �-Sexithiophene Grains on Artificially Patterned Substrates: Graphoepitaxy"

8. S. Obata (Univ. of Tokyo)

"Electrical Properties of Chemically Prepared Graphene"

9. Q. Wei (Univ. of Tokyo)

"Surface-Segregated Monolayers: A New Type of Ordered Monolayer for Surface Modification of Organic

Semiconductors"

10. S. Kera (Chiba Univ.)

"Electronic states and spin configuration of Mn-phthalocyanine films"

11. T. Nishi (Chiba Univ.)

"Electronic Structure of TNAP on Bismuth (001)"

12. S. Duhm (Chiba Univ.)

"Orientation Dependent Ionization Energy of Organic Thin Films: The Role of Intramolecular Polar Bonds"

13. S. Hosoumi (Chiba Univ.)

"Hole-vibration coupling in an oriented thin film of Perfluoropentacene"

14. S. Haas (AIST)

"High-Performance Dinaphthothienothiophene (DNTT) Single-Crystal Field-Effect Transistors"

15. S. Haas (AIST)

"Charge and Field Modulation Spectroscopy on Organic Thin-Film Transistors"

16. H. Matsui (AIST)

"Spatially-Resolved Frequency Response Analyses on Organic Thin-Film Transistors”

17. H. Yuan (Tohoku Univ.)

"Liquid Gated ZnO Transistor and Its Polarity Selective Operation"

18. J. T. Ye (Tohoku Univ.)

"Inducing Superconductivity in Layered Material Based Electronic Double Layer Field Effect Transistors" �

Page 52: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

51

hijk�������������l��$��������������������$��,����������l�%mnopbJqr'�

soj2ttuv &&w &2s%x'� yz{o|�

}~j��`a~���������*���2-�

��j���+l�������)�������

~�j���!�������S������O�g�"�������O�����

��j�

Physicists are often so awestruck by the lofty achievements of the past, we end up thinking all the big stuff is done,

which blinds us to the revolutions ahead. We are still firmly in the throws of the quantum revolution that began a

hundred years ago. Quantum gravity, quantum computers, qu-bits and quantum phase transitions, are

manifestations of this ongoing revolution. Nowhere is this more so, than in the evolution of our understanding of the

collective properties of quantum matter.

Fifty years ago, physicists were profoundly shaken by the discovery of universal power-law correlations at

classical second-order phase transitions. Today, interest has shifted to Quantum Phase Transitions: phase

transitions at absolute zero driven by the violent jiggling of quantum zero-point motion. Quantum, or Qu-transitions

have been observed in ferromagnets, helium-3, ferro-electrics, heavy electron and high temperature superconductors.

Unlike its classical counterpart, a quantum critical point is a kind of "black hole" in the materials phase diagram: a

singularity at absolute zero that profoundly influences wide swaths of the material phase diagram at finite

temperature.

I'll talk about some of the novel ideas in this field including "avoided criticality" - the idea that high temperature

superconductivity nucleates about quantum critical points - and the growing indications that electron quasiparticles

break up at a quantum critical point.

¼ \8 ÂÃULG-COE®m­*�öTËDsWI�KL�®ªòMNØÙö� G-COE+à²�0��¶01°;<=

hij�R����n��:Y=Z[�n��b���

soj2ttuv &2w 2�s%x'� yz �o|�

}~j��`a~���������*���2-�

��j�x� ���

~�j��� � ¡U¢£¤¥¦ `a¦�§9�

��j�

L ó4�n��ôÛ�!STM" ���ñ=�a��¤�u¡Ga1W��n��ij!STS"�¯2¥�|���«¬�

n��¥��efæùD,Þ�9»/�<)��¬*�Bni7��«4aV2b0wT�º|W&|D¬�IJK

LMNa %³����01?9:2=

L STM ef�n��ij!IETS"�Æ:9À~�de�H��{�ãº|��:9ãi��ã�PJ Ø12

w¨�0:ØV�1�æwT×£T8H'ª�MN�Æ:9øt2=ä^º|��\�H�l¹mïq�ni��Æ:9�

{�\�¯2ã�¤×���¡�n­�0{2¾8ª¦"�0¯�¥����� 2Æ\2DúýQ���DÊ£9

de<2=

-���¢K�¥�

Page 53: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

52

hij¨©ª«¬­®:;<=¯@8°±mn� �

soj2t&tv &w 2²s%x'� yz �o|�

}~j��`a~���������*���2-�

��j³´� µ¶�

~�js�«¬·¸¹º^»¼½8B°¾8F`a~�

��j�

�dæ¥�¼ßa ��dæ�,¡®�H£�������ÑÒ�¯2gT4�B78�¥ã�PÑÒÓ�Ô�Ú�

Ü4ôý<2=(: Q íD�Æ� �»¼ß4¯�¨Ïa¿2=¨×�ê +l®n�SHT<UV1e� D

,Þ<2b0�¯°�e�µP1ÑÒÓ�ÔDêú<2b0SaV2=�dæÚ��¡�0�9Þ:T82Ú� 2 D÷

© ¯�dºÏa¿°�b8D�ô��0(1<b0SaV2=b��ô����»¼ß�7T� �dædî�ß�

dXÓ�Ô�Í(Î�gDÞ:9�B�)mÇûüa�Ú�jLê*4��012=�ô���UV1�E��N0�d

æ¼ß��G2¥ã`Ó�Ô�ÉÊP--'£�H£��?��Î4eE�UVW1°�>Ë���DÞ:HÚ�jLê

*a ï�a¿?Hú�4¾[0êú�9:2=¼¼½a 'ª�ê*ÏDde<2=

Page 54: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

53

hij¿ÀÁ_^ÂjÃ$�������$����� ����!����$���Ä�

soj2ttuv &tw 2s%Å'� yz{o|yzÆo�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��jÈÉ� ÊË�

~�j��� ��`a~�

��j�

Although there is no local order parameter for the Haldane gap phase, it is separated from a trivial disordered

phase by a quantum phase transition. We attribute this to a topological order in the Haldane gap phase.

However, the question still remains: what exactly is the topological order? First, we revisit existing

characterizations of the topological order in terms of a hidden Z 2 x Z2 symmetry breaking, and of edge states. We

find a fundamental difference between odd- and even-S Haldane gap phases.

Furthermore, we introduce a novel characterization of the topological order in terms of an intrinsic parity with

respect to inversion. Each characterization shows the robustness of the topological order in the presence of an

appropriate symmetry. In particular, the “intrinsic parity” protects the topological order as long as the system is

invariant under inversion about a center of bond, even when the hidden symmetry breaking and edge states fail to

characterize the Haldane gap phase.

Reference:

F. Pollmann, E. Berg, A. M. Turner, and M. O., arXiv:0909.4059

http://jp.arxiv.org/abs/0909.4059

hijÌÍ�Á_^Âj���+�#����!������� ������������������T� ����#���������!��Î�������#����#����

soj2ttuv &tw .s%w'� yz &o �t�|yz 2o �t��

}~j��`a~���������*���2-�

��j���+l��l�����#$����

~�j��Ï�����#Ð�����������+�����Ð������Ð����$���ÐO�/�������

��j�

The spin wave spectra of surfaces and ultrathin films in the range of large wave vectors and large energies are

largely unexplored. Neither Brillouin light scattering can be used because of insufficient wave vector of the photons

or too low scattering cross section of the neutrons, respectively. By contrast Spin-Polarized Electron Energy Loss

Spectroscopy (SPEELS) has high surface sensitivity and the scattered electrons can have large energy loss and large

wave vector transfer.

L The angle resolved scattered intensity of an incident electron beam with spin polarization parallel and antiparallel

to the magnetization of the ferromagnetic film is measured. We show that spin wave loss peaks can be observed with

SPEELS up to the surface Brillouin zone boundary. They are visible as pronounced peaks in the intensity spectrum

for incident minority spin electrons. This is demonstrated for an 8 monolayer thick Co film on Cu(001). Te measured

spin wave energy at the zone boundary is about 270meV. The spin wave loss peaks are strongly damped at large

energies by the Stoner excitation continuum. Majority spin electrons absorb magnons and therefore lead to energy

gain peaks in the spectrum.

-���¢@û´��

Page 55: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

54

hij¨Ñ�}¦ `aÒÓÁ_^Â�

soj2ttuv &tw �s%Ô'� yÕ &to|yzÖo�

}~j��`a~�����Ç 2Á_^Â�*��&2'�

��j���+l���������R���

~�jR$�������������g�����������S�������

��j�

Semiconductor Quantum Dots and Nanowires for Optoelectronic Applications

hij³�nÁ_^Âj��#��������#���+�!��������� ������#���� ���,�� ��

soj2ttuv &tw &�s%Å'� yz �o|yzÆo .t��

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j�

Program

16:00-16:50

Austen C. Angell (Arizona State University)

A 'big picture' for the thermodynamics of molecular and network glasses

16:50-17:20

K. Ishii and H. Nakayama (Gakushuin University)

Liquid-liquid structural relaxation in supercooled liquid state of ethylbenzene and related compounds.

17:20-17:50

O. Yamamuro and S. Tatsumi (ISSP, University of Tokyo)

Glass transitions and low-energy excitations of vapor-deposited simple molecular glasses

hij¿ÀÁ_^Âj��#��������S����!�������� �!��������)�×&��� ���# ���� �������������

soj2ttuv &tw 2�s%Å'� yz �o|yz .o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��jØÙ� Ú��

~�j��� � ¡Û¿¦ `a¦�

��j�

We introduce a unital associative algebra A over degenerate CP^1. We show that A is a commutative algebra and

whose Poincare series is given by the number of partitions. Thereby we can regard A as a smooth degeneration limit

of the elliptic algebra introduced by one of the authors and Odesskii. Then we study the commutative family of the

Macdonald difference operators acting on the space of symmetric functions. A canonical basis is proposed for this

family by using A and the Heisenberg representation of the commutative family. It is found that the Ding-Iohara

algebra provides us with an algebraic framework for the free field construction. An elliptic deformation of our

construction is discussed, showing connections with the Drinfeld quasi-Hopf twisting a la Babelon Bernard Billey,

the Ruijsenaars difference operator and the operator M(q,t_1,t_2) of Okounkov-Pandharipande.

Page 56: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

55

hij¿À@�ÜݯDÁ_^Âj������)�����������#$���������������� ������,�������������������

soj2ttuv &tw 2us%x'� yz �o|yz .o�

}~j��`a~�����Ç �Á_^Â�*��&�'�

��j�$������������

~�j����������+���R$������#����$���#�O��R��

��j�

I will discuss the implementation of the diagrammatic Monte Carlo technique on the L-shaped Keldysh contour.

This machinery will be applied to quantum dots and used as an impurity solver in non-equilibrium DMFT

calculations. Specifically, I will present results on the current-voltage characteristics of the Anderson impurity

model and on the relaxation dynamics of the Hubbard model after a sudden change in the interaction strength.

hij¿À@�ÜݯDÁ_^Âj���#�����������T�������� �+� )����������� ���� �� ���k�����T��!���!����#�

Q��� ���� �R�����!�#���/���g�������

soj2ttuv &&w �s%Þ'� yz �o|yz .o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��jR$���������#Ð$�����

~�j)������ ���$���,���R$����,��O�)g��O�Q���#��

��j�

I will present a theory of the static electron polarizability of crystals whose energy spectrum is modified by

quantizing magnetic fields. I will show that the polarizability is strongly affected by nondissipative Hall currents

induced by the presence of crossed electric and magnetic fields:these can even change its sign. I will illustrate the

results in detail for a two-dimensional square lattice. A important consequence is that the polarizability and the

Hall conductivity are, respectively, linked to the two topological quantum numbers entering the so-called

Diophantine equation. These numbers could in principle be detected in actual experiments. Work done in

collaboration with P. Streda and T. Martin.

ReferenceâP. Streda, T. Jonckheere and T. Martin,

Phys. Rev. Lett. 100, 146804 (2008)

http://link.aps.org/doi/10.1103/PhysRevLett.100.146804

hijU�§Á_^Âj��!$�+��� ����#�����������������#�����k��������������������

soj2ttuv &&w .s%x'� yzßo|yz{o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��jP�l����!���1S��!���

~�jP��� �����!$���!����#�Q��� �Î����������%�ÎP'�������#$�)�����O�P��� ���

��j�

In this presentation I will review our recent results obtained in low-dimensional and frustrated spin systems

using high-field Electron Spin Resonance (ESR) at the National High Magnetic Laboratory, Tallahassee, USA, and

the Dresden High Magnetic Field Laboratory, Germany. It includes the observation of the sine-Gordon behaviour of

magnetic excitations in quantum spin-chain material Cu-PM, observation of the two-magnon bound states in the

new candidate for the magnon Bose-Einstein condensation (BEC) NiCl2-4SC(NH2)2 (known as DTN),

antiferromagnetic resonance in the frustrated hexagonal multiferroic material YMnO3, observation of the excitation

spectrum in the spin-ladder material BPCB and others. The talk will give also a brief introduction into the recent

development of the high-field ESR program at the High Magnetic Field Laboratory in Dresden.

Page 57: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

56

hij¿ÀÁ_^ÂjP����������������+��������/�������

soj2ttuv &&w �s%Å'� yz{o|yzÆo�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j�à� áâ�

~�j��ãä� � ¡¿ã `a¦���¿ åæ�

��j�

We review recent results on spin glasses using duality arguments. Spin glasses have a poorly-understood frozen

phase that can be seen as "ordered in time but disordered in space". Although spin glasses are relatively well

understood on a mean-field level, there is little consensus on the nature of the spin-glass state in finite dimensions

and real materials. Investigations for spin glasses in finite dimensions rely mainly on numerical studies because

there are few analytical methods that work in finite space dimensions. A step towards a deeper understanding of

spin glasses is to develop analytical methods that allow one to obtain exact or very precise estimates for

characteristic quantities, such as critical parameters to support and judge the reliability of numerical techniques.

Recently, we developed a duality analysis using renormalization group techniques, which is known to deliver the

exact location of the critical point for non-random spin systems.

In this talk I review recent results central to the study of spin glasses using duality arguments. First, we

determine the precise location of the multicritical point as a benchmark of the method. Furthermore, we obtain the

first analytical evidence for the absence of a finite-temperature spin-glasses transition in two-dimensional systems.

Second, we estimate the slope of the phase boundary which represents the decay of the ferromagnetic phase due to

randomness. This shows that the general result by Eytan Domany on the slope of the phase boundary [J. Phys. C 12,

L119 (1979)], commonly used as a benchmark for numerical approximations, is not universal.

hijÌÍ�Á_^Âj�ÌÍ�çèéêZ[A\[ëìb`abíîEïzbcð�

soj2ttuv &&w us%w'� yzño|yzßo�

}~j��`a~�����Ç �Á_^Â�*��&�'�

��jòó� ô�

~�jõö�÷� ¿ã ø�

��j�

VÄjD ?Hijî º|W&|aÒb2ÜL}~D�t2Uª0�9eE�þÞa¿24��$�7T�I):~

ÞD¿r<2Ø�aK01?9:2ÈÙS¿2=º|W&|}~MN��G2VÄjij�þÞDÁ��HØ�a�

y��¯�¯Ø1ÈÙD�:ÆÆ� �¯Ø1×%���¿4��w�Æ:9��9(H:=½��¢£�B8Áa�Ø

$Êi�ê*����Æ:9ÏÐ<2=

Page 58: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

57

hijÌÍ�Á_^Âj�où�úûüý��þ:Y=Z[� ]@^_8F`abcð�

soj2ttuv &&w us%w'� yzßo|�

}~j��`a~�����Ç �Á_^Â�*��&�'�

��j��� ��

~�j��� ��`a~HIÌÍ��`aÒÓ�����

��j�

��}~D�£0�Hº|ÜL}~D��<2H£� �º|��¤W¥�|��(1T�º|�\Â0��GOÞ�

¯�9b8TD³�H}~Væù�t�²à)�DÕTw�<2%µ4¿2=lß��´ñ���DÞ:H�(,ij�

�¿�¯°��ãº|a���¬i���gW¾3ô�}~t�²à)�D�;´ÀÁ�$Êi��a�«<2b04ê

ú78H=�w��úýùT82�Ì���ñ���������ûü ´���¿2: �mûüa¿°��«aV2

ú�� BC4¿2=¨×�VÄj����$Ê�¤D,Þ�H¤�ûüa�$Êi�«�4ª����1?9VH=¼

¼½a �SPring-8 �ÁÝ78H(ÆAW(i��Ť����*�n BL07LSU ��:9ùT82Ì��� X �0

lß��´ñ���jDÍ(Î�gH7n®W®m�Ï$Êi�j¥�ijî�¯°º|ÜL}~�t�²à)�D�t2

MNÏ�Æ:9de�H:=7T���㢣�Áaj¥�ijî4��2U��j¥�ijî0Í(Î�gH$Êi�U

��j¥�ijîDr�����}~D}~� Áaqq�¹���«<2b0D�Ñ<MN<=�Æ:9Sde�H:=

hij¿À@�ÜݯDÁ_^Âj�����!� ���%�'�����������+�����������173���!������� ����� �

#����,���#���+�������#��������#������������ �Q������!����#��������

soj2ttuv &&w &&s%Þ'� yzo�t�|yz 2o �t��

}~j��`a~�����Ç �Á_^Â�*��&�'�

��j�l��l�)�T�������

~�j)������ ��Q���#�� ������������O�)��)��������

��j�

We argue that an ultracold quantum degenerate gas of ytterbium 173Yb atoms having nuclear spin I = 5/2 exhibits

an enlarged SU(6) symmetry. We shall discuss the consequences of this symmetry for ultracold 173Yb gases loaded in

optical lattices. We argue that, in an optical lattice at current experimentally accessible temperatures, Mott states

with different filling are expected to coexist in the same trap. Moreover, within the Landau Fermi liquid theory,

stability criteria against Fermi liquid (Pomeranchuk) instabilities in the spin channel will be discussed. Focusing on

the SU(n > 2) generalizations of ferromagnets, it is shown, within mean-field theory, that the transition from the

paramagnet to the itinerant ferromagnet is generically first order. These SU(n > 2) ferromagnets can become stable

by increasing the scattering length using optical methods or in an optical lattice.

Page 59: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

58

hij¿ÀÁ_^Âj��+�������� �!������� ���� ��� ������������� ����"��$��$�������!��������#����

soj2ttuv &&w &�s%Å'� yz �o|yz .o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j� � ô�

~�j��� ��`a~�

��j�

Interplay of electron correlation and randomness is studied using the Anderson-Hubbard model [1-2]. This model is

one of the minimal models of real strongly correlated materials under the influence of inevitable randomness, and its

Hamiltonian includes the nearest-neighbor hopping, on-site repulsion and spatially uncorrelated random potential.

Using the Hartree-Fock approximation, we obtain the ground-state phase diagram for three dimensions. One might

think that, under the influence of the randomness, the single-particle density of states (DOS) is nonzero at the Fermi

energy even in insulating phases because of localized impurity levels induced by randomness. However, we find that the

DOS vanishes toward the Fermi energy under the influence of electron correlation. This indicates that an

unconventional soft gap emerges from the coexistence of on-site repulsion and randomness. We call it a soft Hubbard gap.

As the origin of the soft Hubbard gap, we propose a phenomenology on the basis of the picture of a multivalley energy

landscape. The predicted scaling of the DOS by the energy is in perfect agreements with the numerical results. We

show further numerical evidence of the soft Hubbard gap in one dimension within the Hartree-Fock approximation and

exact diagonalization. Finally, we compare the present theory with experimental results for SrRu1-xTixO3.

Reference:

[1] H. Shinaoka and M. Imada, Phys. Rev. Lett. 102, 016404(1-4) (2009).

[2] H. Shinaoka and M. Imada, J. Phys. Soc. Jpn. 78, 094708(1-20) (2009).

hij¿ÀÁ_^Âj���#������������$������$�����S���$��������$�����S�)��$���

soj2ttuv &&w 2ts%Å'� yz �o|yzÆo�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j���+l��$����S��$���

~�jP�����������+��$���#�O�����/���������S������O�������

��j�

Two seemingly distinct systems are analyzed and, somewhat unexpectedly, shown to be related. System I -The

Dirac monopole: A (spinless) electron on a sphere subject to a central magnetic field B = g r/r 2. The Aharonov-Bohm

effect plays a key role [Wu and Yang, Phys. Rev. D 12, 3845(1975)], as it clarifies the construction of a non-singular

vector potential and its relation to the Dirac quantization condition 2eg = nhc (n =0, 1, 2...). I approach this problem

from a "condensed matter point of view" using a tight binding model. For highly symmetric lattices, the energy

spectrum is calculated analytically as function of n and displays a beautiful pattern, which is entirely distinct from

that of the Hofstadter butterfly. The systematics of level degeneracy is unusual and poses some challenges to the

theory of point symmetry groups. The spectrum of an electron hopping on the sites of a Fullerene reveals a set of

magic (monopole) numbers ni.

L System II -Spin-Orbit in a central field: A (spinfull) electron on a sphere subject to an electric field E = q r/r2. Spin-

orbit interaction results through the Pauli equation and, in a tight binding formalism, leads to peculiar Aharonov-

Casher effect. The spectrum is calculated analytically as function of the (dimensionless) spin-orbit strength and

displays rich and beautiful pattern with some unexpected symmetries in which physics and geometry interlace.

L Connection between I and II: I expose a remarkable relation between the two seemingly distinct physical problems:

The energy spectrum in system II at a certain symmetry point is identical with the energy spectrum in system I at n =

1. Thus, it is principally possible to test the physics of an experimentally inaccessible system (magnetic monopole) in

terms of an experimentally accessible one (electron subject to spin-orbit force induced by central electric field).

Page 60: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

59

hij¿À@�ÜݯDÁ_^Âj�Q�������,�� O�����Q�������,�� O��� �������$����������������#�� ��� �

�� �#��������

soj2ttuv &&w 2�s%Ô'� yz 2o|yz �o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��jP�l����!�������#$�

~�j���������+���Q�������+���#$��!O�Q���#$��!�T�����������#$�

��j�

L The role of Coulomb correlations in the iron pnictide LaFeAsO is studied by generalizing exact diagonalization

dynamical mean field theory to five orbitals.[1] For rotationally invariant Hund's rule coupling a continuous transition

from a paramagnetic Fermi-liquid phase to a non-Fermi-liquid metallic phase exhibiting frozen moments is found at

moderate Coulomb energies. For Ising-like exchange, this transition is first order and occurs at a lower critical

Coulomb energy. The correlation-induced scattering rate as a function of doping relative to half-filling, i.e.,

� = n/5-1, where n = 6 for the undoped material, is shown to be qualitatively similar to the one in the two-dimensional

single-band Hubbard model.[2] In this scenario, the parent Mott insulator of LaFeAsO is the half-filled n = 5 limit,

while the undoped n = 6 material corresponds to the critical doping region �c � 0.2 in the cuprates, on the verge between

the Fermi-liquid phase of the overdoped region and the non-Fermi-liquid pseudogap phase in the underdoped region.

[1] H. Ishida and A. Liebsch, arXiv:0911.1940 submitted to PRB

[2] A. Liebsch and N.H. Tong, Phys. Rev. B 80, 165123 (2009)

hij¿ÀÁ_^Âj�@��7��Ç��¿�n�� þ:Y=��9b� ��b��¼CD�Â� �

soj2ttuv &&w 2!s%Å'� yz �o|yz .o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j�"� #��

~�j�$� �

��j�

L ÜL}~�5ßDGÂ<2¼JP�ܵ1Ú �zØ;aS1W¯�æù�EØbÀ�����]Üa¿2=½�v�

¬�ãi�1 ���T�4UV:©��:9 �©D��<2i��Æ:9�W�·D��7g2b0�¯?9�b

À�����]ÜD��<2b04%³a¿2=�w��ÜLæùD�ÐP��ø<2� Ú�ÜL��4%³a¿°�

oWèT89:2¯Ø�¯���;�� ¥�È�ì�9�z�JU<2=;H�i�Ð�CÁ:9bÀ�����D�

�<2b0 ��ÕP1i�ïàðñ�ï n�AîDÞ:H0�9Sï�a¿2b04èT89:2=>?9�ÑK©

�ÜLæù�bÀ�����]ÜDNoW�­¨��P���<2×î�r� i�KL��G2��PwÆܵ11

2�¨Æa¿2=

L Z[ b�æ2D�Ô<2¶��êÉÊ­q¡ÔDC 0<2h�Ïq¡Ô��­¨��i�/ L!QM/MM"îDr�

�[1]�7T�b8Dcð1v���Ð������º»��Ð[2]�0�Î�H!QM/MM-ER[3]"=QM/MM î��:9 �

}~��@<2�i�(DÚ�ÜLP�a:��°�¥�P�±P1�iD�Õ `a�ø<2�a��jAD���<2

b01W·�qn6nÏ�DNoW��7g2b04��a¿2=;H�Matubayasi T�¯2�����º»��Ð �

³E�v���Ð0 ¤1°�vJ¶°�v��ÉÊi�a 1WvJ–v�Ê��GOÞ������i��ÈDC¼]È

0�9v�µbÀ�����D�ø<2S�a¿2=b�×î �ÐPLÍ(4³{a¿°�:w12vJ–v��Í�Æ:

9S¨¾8�i��ÈabÀ�����D�ø<2�a�ÉÊi��ÈDÞ:2×î0�t9²ø4,:0:Ø,Ù4¿2=

L ¼+à²�a �QM/MM-ER î�7�DMÕ<200S��¯�~ÞÏ0�9®m�n����v�µD0°¿K�

¯�Â[��sn �!H3O+, H9O4+"�Æ:9bÀ������ÊD�Ø=

[1] H. Takahashi et al, J. Chem. Phys. 119, 7964 (2003).

[2] N. Matubayasi et al, J. Chem. Phys. 113, 6070 (2000).

[3] H. Takahashi and N. Matubayasi et al, J. Chem. Phys. 121, 3989 (2004).

Page 61: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

60

hij¿ÀÁ_^ÂjFG»ÂDA%ÂFA&@��'(@���)*+í,=-./mn0E12]@^_8F�

soj2ttuv &2w �s%Å'� yz �o|yz .o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j34� 56�

~�j��� � ¡7?8�`a¦�

��j�

Quantized vortices appear in various systems such as superfluid helium, superconductor, ultracold atomic Bose-

Einstein condensates (BEC), and so on, and they are characterized by the topological charge. Vortices with the

topological charge which obeys non-Abelian algebra can be identified as non-Abelian vortices. Although all integer

and fractional vortices which have been studied in superfluid, superconductor, and atomic BEC are Abelian, we

show that simplest non-Abelian vortices can appear in the system of a spin2-spinor BEC.

We futher show that the non-Abelian properties become remarkable in the collision dynamics of vortices.

For example, when two vortices collide with each other, well known reconnection dynamics is topologically

forbidden and a new vortex appears between the two vortices and connects them, following the algebraic manner.

hij¿À@�ÜݯDÁ_^Âj�++�#���+������#���#��������������������!���#�������� ����#����� �

�����������#�����������������������

soj2ttuv &2w &�s%w'� yz �o|yz �o�

}~j��`a~�����Ç .Á_^Â�*��&.-�

��j9:� ;��

~�j<=� � ¡¿ã `a¦�

��j�

In strongly correlated electron systems, one should take account of considerably different energy scales of a bare

Coulomb repulsion and a renormalized kinetic energy. Additionally, the momentum-dependent correlations among

quasiparticles must be relevant in considering 2nd-order phase transitions of superconductivity, magnetism etc. A

dual nature of electrons in energy and momentum spaces and its interplay are essential in the vicinity of a quantum

critical point.

L Weak-coupling approaches such as perturbation and FLEX for low-energy effective models, or (cluster) dynamical

mean field theory (DMFT) for strong short-range correlations have been developed to study strongly correlated

electron systems. The interplay between electronic states in two opposite extremes is indispensable to show a

variety in strongly correlated electron systems, however, which is difficult to treat based on one fixed point.

L I propose a hybrid approach, which takes account of nonlocal correlations around DMFT solution. A diagrammatic

construction of nonlocal fluctuations using a local vertex is developed to improve DMFT self energy. I will discuss

mainly one-particle spectrum in the Hubbard and the Anderson lattice models. I will also touch on recent progress of

theories in this direction.

Page 62: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

61

��� ��

�� �� ����� ������

��� ���

�� � �� �� � � � � �� � �� !� � "� � #� � $�

%� &� '� (� ) *+,-./01� 2� � 3� 456789:;<=>23?�

�� �� ��� �� � �@ ����

�A� B�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

C� D� � � E� ) *+,-./01�FGHI� 2� � 3� �

J� K� L� M� ) NOPQRSTU01� 2� � 3� �

�� �� ��� �� �V����

�A� B�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

W� X� Y� Z� [\]^97./��� 2� � 3� �

�� �� ��� �� � �� ����

��� ��

�� � �� �� � � � � �� � �� !� � "� � #� � $�

_� D� `� a� ) .b1cde01� 2� � 3� fghUiUTj3k?�

�� �� ���V�V����

�A� B�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

l� m� � � n� W.bTU��� 2� � 3� �

�opqrs�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

t� u� � � v� ) *+,-./01�FGHI� j�3�k� ) *+,-./01�wxyHI�z{�

�|� }�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

~� �� �� �� ��H���� 2� � 3� iU�T.�iU��j3k?�

��}��

�� � �� �� � � � � �� � �� !� � "� � #� � $�

�� �� a� �� [\]^97./��� 2� � �3� ���]��9�hU�

�� �� ���V� �@����

�A� B�

�� � �� �� � � � � �� � �� !� � "� � #� � $�

�� �� � � �� ��H���� 2� � �3� ��

L� M� � N�

Page 63: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

62

LÁ��¯°[ª�9:D:H�;<=ð]?�u��úÚ?�~:D�I::H�;<=

Ð.MN���ô�¯â9:�wÈ ²È����IMN����¼MNZ�L L [ªÐ�

�.MN�Y �ôÚ�©�Ú�Ô¡��Î���"�4�DÞ:HI�LMN=ÛMNZa b8T�©DODwT«�;a¨�

�9�:�Ú�ú���ã�Ú�Ó®×O���n�m�)�1 �Æ:9�MND�?9:2=b8;a�MN

iñ æ�1:4�b8T�MNDj P�Q£2��¿2ÔAMN?DúÚ<2= _.xyê L L É¡´"�"�¡�öÐö� �.~:Ü"L L L \n1ù\��;H b80�ôÀJ�� D�Æ×= �.]L L X L L ]X����]�=H¡��мDCA0<2= �.9:�� L L �������_�S�ä�%\ �.\]$X Ô��12tW�:$X

�.<�Âü ���u��`Î L �u� L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� �m�~:�`Î L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� �\^mWÑæªwô�¯2~:?¼��Æ:9��èÂ�O�?wTÂü<���î� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� .Âü<�� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃUL"ê#IMÚÛ1}yT L L L ¥\ 04-7136-3590L e-mailL [email protected] Ì$.¼ ��<2æ:Î�g� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃULIMN\²È����IMN��L ª«L �¼L k5 L L L ¥\ 04-7136-3305L e-mailL [email protected] ÌÌ.­�3� {²È����IMN��L [ª~:Âüý��;H {�èÂý��¹D%Â��&î�`Î ÂÇ0<2b0=

Ì'.��×î ÂÃULIMN\ª«8�934Ô�:H�;<=H¡��ð]?�1:`Î �Ô�DÅÇ:H�;<=

Ì(.¯�4 �î°:H¡:H~:Âüô ú�:H�;g��a�F���J�/'(Á7:=;H��� ¼~:�Þ+�

C° Þ��¿�Ó® �Û1�À1W­]?��r»�)fâ*@<2b0 ¨�¿°;g�=

�� ''� Ì� 'ÌSL

L L L L L L L L L L L L L ÂÃULIMN\m L L L L L L L L L L L L L L L L L +L L L �L ¤

OP?�-���¢QRST%&'(�

Page 64: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

63

Á��¯°[ª�9:D:H�;<=ð]?�u��úÚ?�~:D�I::H�;<=L

Ð.MN���ô�¯â9:�wÈ ��ijMN���,MNZ�L L [ªÐ�

�.MN�Y ��P1�É-�WÅ X �ñ���DÞ:H�(i��j¥�ij�$Êi�j¥�ij�ôÛj¥�ij1 �¯2jKL0�¯8DÞ:HIJKLDuQ<2= _.xyê L L É¡´"�"�¡�öÐö� �.~:Ü"L L L \n1ù\��;H b80�ôÀJ�� D�Æ×= �.]L L X L L ]X����]�=H¡��мDCA0<2= �.9:�� L L �������Ð�S�ä�%\ �.\]$X Ô��12tW�:$X

�.<�Âü ���u��`Î L �u� L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� �m�~:�`Î L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� L �\^mWÑæªwô�¯2~:?¼��Æ:9��èÂ�O�?wTÂü<���î� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� .Âü<�� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃUL"ê#IMÚÛ1}yT L L L ¥\ 04-7136-3590L e-mailL [email protected] Ì$.¼ ��<2æ:Î�g� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃULIMN\��ijMN��L ª«L ,L . L L L ¥\ 04-7136-3380L e-mailL [email protected] ÌÌ.­�3� {��ijMN��L [ª~:Âüý��;H {�èÂý��¹D%Â��&î�`Î ÂÇ0<2b0=

Ì'.��×î ÂÃULIMN\ª«8�934Ô�:H�;<=H¡��ð]?�1:`Î �Ô�DÅÇ:H�;<=

Ì(.¯�4 �î°:H¡:H~:Âüô ú�:H�;g��a�F���J�/'(Á7:=;H��� ¼~:�Þ+�

C° Þ��¿�Ó® �Û1�À1W­]?��r»�)fâ*@<2b0 ¨�¿°;g�=

�� ''� Ì� 'ÌSL

L L L L L L L L L L L L L ÂÃULIMN\m L L L L L L L L L L L L L L L L L +L L L �L ¤

OP?�-���¢QRST%&'(�

Page 65: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

64

Á��¯°[ª�9:D:H�;<=ð]?�u��úÚ?�~:D�I::H�;<=

Ð.MN���ô�¯â9:�wÈ TUVÄIMN_`L L [ªÐ�

�.MN�Y L ¼_`a �VÄj_`�lr�nl�)�q���ÁÝ�H���*�n0ê*`ÝD,Þ�9�äA�¯â��

ni�j¥�ijê*�¯2IJ�¥�|�MN1 D�?9:2=¼9:a �VÄjD,Þ<2IMNDj P

�Q£20���úþ�¹¡l0� �9��,Þê*�GHS�:�ê*^�r��¯?9c�:MNiñDrs<

2b0���¿2ÔAMN?DúÚ<2= _.xyê L L /0´ÆWÞ�U1ÐöÐ L L (�����+,-MN��� �.~:Ü"L L L \n1ù\��;H b80�ôÀJ�� D�Æ×= �.]L L X L L ]X����]�=H¡��мDCA0<2= �.9:�� L L �������_ÐS���%\ �.\]$X Ô��12tW�:$X

�.<�Âü ���u��`Î L �u� L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� �m�~:�`Î L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� �\^mWÑæªwô�¯2~:?¼��Æ:9��èÂ�O�?wTÂü<���î� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� .Âü<�� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃUL"ê#IMÚÛ1}yT L L L ¥\ 04-7136-3590L e-mailL [email protected] Ì$.¼ ��<2æ:Î�g� L L !277-8581L É¡´"�"�¡�"�Ð��o L L ÂÃULIMN\]^TUVÄIMN_`L ª«L ~�L Õ� L L L ¥\ 04-7136-3400L e-mailL [email protected] ÌÌ.­�3� {TUVÄIMN_`L [ª~:Âüý��;H {�èÂý��¹D%Â��&î�`Î ÂÇ0<2b0=

Ì'.��×î ÂÃULIMN\ª«8�934Ô�:H�;<=H¡��ð]?�1:`Î �Ô�DÅÇ:H�;<=

Ì(.¯�4 �î°:H¡:H~:Âüô ú�:H�;g��a�F���J�/'(Á7:=;H��� ¼~:�Þ+�

C° Þ��¿�Ó® �Û1�À1W­]?��r»�)fâ*@<2b0 ¨�¿°;g�= L L L L L �� ''� Ì� 'ÌSL

L L L L L L L L L L L L L ÂÃULIMN\m L L L L L L L L L L L L L L L L L +L L L �L ¤

OP?�-���¢QRST%&'(�OP?�-���¢QRST%&'(�

Page 66: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

65

Á��¯°[ª�9:D:H�;<=ð]?�u��úÚ?�~:D�I::H�;<=

Ð.MN���ô�¯â9:�wÈ IJ`�¯!_`L L [ªÐ�

�.MN�Y `���¹¡l�¨w0�9���,Þ��;n�æÃ�l��}Þ�Py�2�?9:H¡W=;H�IKL�

�G2Â[�æ2D�Õ<2H£�­¨��¥�|����i�/ Lî�Ónoí�mî1 �AîDÞ:HUð�

Èí���¯2MND�IJ`�¯!_`\w0� �9�?9:H¡W=q�áq¨�·;�Ô�r��U����

�¯2���òw����ï�o�}Þ�5*4¿2×DúÚ<2= _.xyê L L É¡´"�"�¡�öÐö� �.~:Ü"L L L \n1ù\��;H b80�ôÀJ�� D�Æ×= �.]L L X L L ]X����]�=H¡��мDCA0<2= �.9:�� L L ��������S���%\ �.\]$X Ô��12tW�:$X

�.<�Âü ���u��`Î L �u� L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� �m�~:�`Î L ���Â���a�� L �P�q���½�ܵ1б��-DÆG2b0� L �´µÐ±�A\�_�ùA�;���� �\^mWÑæªwô�¯2~:?¼��Æ:9��èÂ�O�?wTÂü<���î� L �MNP��7µ�����²ùA� L �MN��Â�����²ùA� .Âü<�� L L !277-8581L É¡´"�"�¡�"�Ð��o L L L ÂÃUL"ê#IMÚÛ1}yT L L L ¥\ 04-7136-3590L e-mailL [email protected] Ì$.¼ ��<2æ:Î�g� L L !277-8581L É¡´"�"�¡�"�Ð��o L L ÂÃULIMN\IJ`�¯!_`L ©ª«L �åL Æ L L L ¥\ 04-7136-3260L e-mailL [email protected] ÌÌ.­�3� {IJ`�¯!_`L [ª~:Âüý��;H {�èÂý��¹D%Â��&î�`Î ÂÇ0<2b0=

Ì'.��×î ÂÃULIMN\ª«8�934Ô�:H�;<=H¡��ð]?�1:`Î �Ô�DÅÇ:H�;<=

Ì(.¯�4 �î°:H¡:H~:Âüô ú�:H�;g��a�F���J�/'(Á7:=;H��� ¼~:�Þ+�

C° Þ��¿�Ó® �Û1�À1W­]?��r»�)fâ*@<2b0 ¨�¿°;g�=

�� ''� Ì� 'ÌSL

L L L L L L L L L L L L L ÂÃULIMN\m L L L L L L L L L L L L L L L L L +L L L �L ¤

OP?�-���¢QRST%&'(�

Page 67: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

66

-��klmU »³VEWbUQXYU�Xi�

U »³VUQX� � ���³Z���

IMD3ý<2�¿H?9L444444444444444444444444444444444444444444LL µqL ¨�L L444444444444444444444LLÌ

IMD389L444444444444444444444444444444444444444444444444444444LL _@L L ÕL L444444444444444444444LL'L

L L q_L L 5L L444444444444444444444LL(L

L #�L 1�L L444444444444444444444LL6

L ��L L ¢L L444444444444444444444LL7

�u��w\wD5*�9L44444444444444444444444444444444444444444444LL Sergey NemirovskiiL L4444444444444LL8

L Rashid. A. GaneevL L44444444444444LL9

IMN\ÌXMN8

�­ 2¼L EC;��ñn�jKL}�)ï ¡®{ECÇmûü��G2jKL�c¿r�L4444444444444444444LL:

IMN\ \8L4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444L'(

IMN\+�L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444L'6

IM�ð��

�L �3¤/L444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444L'9

�L ÂÃULIMN\ªw9:�Æ:9L4444444444444444444444444444444444444444444444444444444444444444L(Ì

�L �� 21�A�XÌXMN8¨;L444444444444444444444444444444444444444444444444444444444444444444444L(9

�L �� 21�A�X�ËMNw¨;L444444444444444444444444444444444444444444444444444444444444444444444L(:

�L �� 21�A�X����;n�ð�¹��,Þh�12¨;L4444444444444444444444444444444444444444444L<Ì

�L �� 21�A�¼j¶·��,Þh�12¨;L44444444444444444444444444444444444444444444444444444L<7

�L �� 21�A�X��,Þ�9:�Æ:9L4444444444444444444444444444444444444444444444444444444444444L79

�L ÂÃUL=ßðù�S��EØ��A$V�Æ:9L4444444444444444444444444444444444444444444444444444L7:

�L �� 20�A��Üä�FÃ8�Æ:9L444444444444444444444444444444444444444444444444444444444444444L8Ì

�L IM~ý�uë}�)ï ¡®r¶��èTgL444444444444444444444444444444444444444444444444444444L8'

�L Horiba-ISSPuëïn7êÄ�!ISSP11"r¶��èTgL44444444444444444444444444444444444444444444444L8(

¯�4

�L ÂÃULVÄjH2MN��wT��èTgL4444444444444444444444444444444444444444444444444444444444L86

�L ­ 54¼IÔA��LÐr¶��èTgL4444444444444444444444444444444444444444444444444444444444444L87

�®��

IM¡¯°�>ì�Æ:9

U »³VUVX� � ���³Z[��

�� 20�A�w\wD5*�9L444444444444444444444444444444444444444LL IÄL ��L L444444444444444444444LLÌ

L L �_L ��L L444444444444444444444L 3

L L ­qL �µL L444444444444444444444LL<

IM�\]�9L4444444444444444444444444444444444444444444444444444LL ñ@L o�L L444444444444444444444LL8

L Ú�L çjL L444444444444444444444LL9

L �?@A�L L444444444444444444444LL:

IMD389L444444444444444444444444444444444444444444444444444444LL £BL �±L L444444444444444444444LÌ$

L ÃqL ��L L444444444444444444444LÌÌ

�u��w\wD5*�9L44444444444444444444444444444444444444444444LL Mike ZhitomirskyL L44444444444444LÌ'

Page 68: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

67

IMN\uë}�)ï ¡®WÌXMN8

L �“Supercomputing in Solid State Physics 2009”�II�L��G2Uð��� 2009�L444444444444444444444LÌ(

ISSP}�)ï ¡®

L �ÂUWKEK���� ¡��ij-0¯�6��n�L444444444444444444444444444444444444444444444444444LÌ8

IMN\ \8L4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444LÌ:L

IMN\+�L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444L'$L

IM�ð��L

L ��3¤/L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444L'9L

L �ÂÃULIMN\ªw9:�Æ:9L444444444444444444444444444444444444444444444444444444444444444444L':L

L ���ÊË�Cw�Æ:9L444444444444444444444444444444444444444444444444444444444444444444444444444444L($L

�®��L

U »³VUnX� � ���³Z �� ��

��,ÞW��MNØÙ�¢��Æ:9L44444444444444444444444444444444LL +L L �¤L L444444444444444444444LLÌL

IMD¿0��9L44444444444444444444444444444444444444444444444444LL þ¼L ��L L444444444444444444444LL(L

IM�\]�9L4444444444444444444444444444444444444444444444444444LL DL L E�L L444444444444444444444LL<L

MNZ¡¯°L L

L �ùñMNZL444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444LL8L

IM~ý�uë}�)ï ¡®L

L �New Developments in Theory of Superconductivity��dæ�Ð�c¿r�L44444444444444444444444444444444LÌÌ

IMN\ \8L4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444LÌ(L

IMN\+à²�L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444LÌ6L

IM�ð��

��� 21�A�XÌXMN8¨;L44444444444444444444444444444444444444444444444444444444444444444444444L'Ì

��� 21�A�X�ËMNw¨;L44444444444444444444444444444444444444444444444444444444444444444444444L''

��� 21�A�X����;n�ð�¹��,Þh�12¨;L444444444444444444444444444444444444444444444L(6

��� 22�A�X��,Þ�9:�Æ:9L444444444444444444444444444444444444444444444444444444444444444L(7

��� 21�A��Üä�FÃ8�Æ:9L44444444444444444444444444444444444444444444444444444444444444444L(8

�®��

U »³VU�X� � ����ZQ��

KEK-ISSP��k`ij-{(i��� ¡��ij-��5F0k`|}�Æ:9L �¦L L GL L444444444444444444444LLÌ

IM�\]�9L4444444444444444444444444444444444444444444444444444LL _¼L L #L L444444444444444444444LL(L

L L ª¦L �¤L L444444444444444444444LL6

IMD389L444444444444444444444444444444444444444444444444444444LL ïqL ø¨L L444444444444444444444LL<L

MNZ¡¯°

L �+¦MNZL444444444444444444444444444444444444444444444444444444LL +¦L H�L L444444444444444444444LL7L

ISSPuëïn7êÄ�

L �Horiba-ISSP International Symposium on “Hydrogen and water in condensed matter physics” (ISSP11)L44444LÌÌ

IMN\ÌXMN8

L �“·p*¡)¥�©�Iý­*lßn�¯â�HIJ�'ª�MN” L444444444444444444444444444444444444444LÌ6

Page 69: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

68

ISSP}�)ï ¡®

L �{cÑÒ��¯2º|&|t�²à)�MN�¿Ú�L4444444444444444444444444444444444444444444444444444L6<L

�{&|��¥�©��G2cú�0I��jPhysics and New Phenomena of �-electronic InterfaceskL444444444L68L

IMN\ \8L4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444L<ÌL

IMN\+�L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444L<(L

IM�ð��L

L ��3¤/L44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444L7ÌL

L �ÂÃULIMN\ªw9:�Æ:9L444444444444444444444444444444444444444444444444444444444444444444L7'L

IM¡¯°­ 6: I�J�­Ðo ­�o�L444444444444444444444444444444444444444444444444444444444444444L77L

�®��L

L

Page 70: 01.`13@..494.. 120ˆ9˙KEK IŸMÙ S 120ˆ9Žı9:78;

>� ?� z� @ L

L y¼�IM¡¯° �°�_a¿2=

L ;��KEK 0 ISSP 4��a J-PARC �k`DuQ�9:2(i��� ¡��ij-�U�

ãäå�-�UV7��:H=

L IM�\]W3]��3DìÖ0�Ô:Øé��[1UL¬MN��D migrate <2b04:

w�ܵa¿2w4�w2=7�Ô)¬[ª CT8H�Èa�DAKÛÞ1T1:�aU]¡

4�30 Kd4e�:1°�S?0Ssê�HMN�ÇDî82$X¡0iØ=IM L_»�¯

Ø10b�1�a�UL���¯âÔAMN? bi��6DÇw��â�â0Çò�9ò�:=

L +¦\w�\] 5 ���MNZ¡¯° ��Y4ªãPaqqqopíw1�301?9:2=

1997 ��j4IM�M¼���\]�H0V�+¦7� çwyqM�mn1ùUL��¡?

H=¯8wT 12�¿;°Hé�wÆ9�B��¡?H+¦7� y¬�N<ia¿2=

L ¼oa®=78Hïn7êÄ�¬MN8��Y $dDw1°}H�9:2={Hydrogen and

water in condensed matter physics (ISSP11)�a �©ª1IJ14T�����¬���

�ÙwTª�ܵ4�¢Õ789:2�V0��Æ:9II��mÙwTÏÐD�?H=E�

���ÂU���0ª�4 Co-chairDOgÆw?H�¡4��[1iñ�ê�Ëw�� Dù9�

�|º:ïn7êÄ��1?H0bU�9:2={·p*¡)¥�©�I�a �­*lßnD

×£0�9bbÈ�aðòP�Q¿�úýaSO¡�1\2D<«�9:2�¾8W²È����

IJ�I4ÏÐ78H={cÑÒ��¯2º|&|�t�²à)��a �(ÆAVÄj¬�Ì

���ñ���4ê*D�æ�9:2=y;aèHW9Sè�1w?HS�4 � �è�9W2

¯Ø�1°�U]XY�9:2={&|P¥�©�� ��14T��(ajb© `+aV1

w?H=jïß�nбQ¤3 kÀ��ÞTWb�iñ t¸�êDFGH4�úýa �[1

$¡)­*ÄnÔD�ÆMN?4`Ã��S?0S�+6�opn­1LëPiñ01°ÆÆ¿2=

L J��¯Ø1�Y�MN84HI�rw82¯Ø�1°�IMS]°ÆÆ¿20z�Þ�ÅR

¼6�II�L?wT ��w°DFG2a¿�Øw¨

�L kL L l