A 1.5V, 1.5GHz CMOS Low Noise Amplifier · 2009. 8. 19. · Poor NF. NF > 3dB ( γ > 1 )...

Post on 20-Sep-2020

0 views 0 download

Transcript of A 1.5V, 1.5GHz CMOS Low Noise Amplifier · 2009. 8. 19. · Poor NF. NF > 3dB ( γ > 1 )...

Stanford University

A 1.5V, 1.5GHz CMOS Low Noise Amplifier

Derek K. Shaeffer and Thomas H. Lee

Stanford University

Stanford University

Outline

• LNA Architecture / RF Noise

• Experimental Results

• Summary and Conclusions

Stanford University

Simple CMOS Noise Model

vg2 Rg Cgd

Cgs rovgs

+

_gmvgs id2

ChannelThermal Noise

• Channel thermal noise is dominant.

• Gate resistance minimized by good layout.i kTB gd d

204= γ

Stanford University

Channel Thermal Noise

• Current HSPICE Implementation:

• BSIM-3 Implementation:

(NLEV < 3)

( )i kTB K V Va a

aGDSNOId gs T

228

3

1

1= ⋅ −

+ ++

' (NLEV = 3)

i kTBgd m2 8

3=

aV

Vds

dsat

= −1

ikT

LQd

eff

effinv

22

4=

µ

Stanford University

How To Get 50Ω

Zin

Dual Feedback Resistive Termination 1/gm Termination Inductive Degeneration

Zin

Rt

Zin

Ls

RL

Zin

Rf1

Rf2

Z R Rin f f= 1 2 Z Rin t= Zgin

m

=1 [ ]Re Z

g

CLin

m

gss=

Need high gain. Poor NF. NF > 3dB

( γ > 1 )

Narrowband.

Stability problems.

Stanford University

LNA Input Stage

ZinLg

Ls

M1

M2Vbias

( )Z s L LsC

g

CL Lin s g

gs

m

gss T s= + + +

( )G g Qg

C R L

RL

R

R

m eff m inm

gs s T s

T

sT s

s

T

s

, = =+

=+

=

11

12

ω ω

ω

ωω

ωω

Note: Gm,eff is independent of gm1!

Stanford University

• Reducing gd0, Increasing Qin lowers F!

• Achieving low F involves linearity tradeoff.

• Technology Scaling is Key.

• Problem : The Free Lunch Principle

Noise Factor

FR

R

R

Rg Rl

s

g

sd s

T

= + + +

1 0

2

γωω

V Q Vgs in s=

FR

R

R

R

g R C

gl

s

g

s

d s gs

m

= + + +10

2 2

2

γ ω

A common form A better form

Stanford University

Induced Gate Effects

S D

G

Vgs

Vds

Ig

• Gate Noise Current• Real Component of Zg

Stanford University

Equivalent Gate Circuit

vg2

ig2 Cgsgg -OR- Cgs

rg

+

_

Vgs

+

_

Vgs

gC

gg

gs

d

=1

5

2 2

0

ωi kTB gg g

2 4= δ rgg

d

=1

5 0

v kTB rg g2 4= δ

“Blue” Noise “White” Noise• δ (∼ 4/3) modified by hot electron effects

• partially correlated with (c = 0.395j)

• and gg not modeled in HSPICE

+ _

ig2 id

2

ig2

Stanford University

Revised Noise FactorLg

Ls

Rs

Rl Rg

gg Cgs vgs

+

_gmvgs

iout2

id2

vg2vl

2

ig2

[ ]FR

R

R

Rg R Q c Ql

s

g

sd s

TL L= + + +

+ + +

1 1 2

5 510

2 2 22γ

ωω

δαγ

δαγ

vs2

(At Resonance)

AdditionalNoise Source

Stanford University

Noise Factor Terms

[ ]FR

R

R

Rg R Q c Ql

s

g

sd s

TL L= + + +

+ + +

1 1 2

5 510

2 2 22γ

ωω

δαγ

δαγ

( )Q

L L

R R CQL

s g

s s gsin=

+= ≈

ωω

12 * Q of the Input Circuit

α = ≤g

gm

d 0

1 Decreases with shorter channels

ci i

i ij

g d

g d

= =*

.2 2

0 395 Gate / Drain Correlation Factor

Stanford University

Minimum Noise Factor

Take to find the condition for minimum F:∂

∂F

WM1

0=

QL opt, .= + ≥15

1872

γδα

F cT T

min .= +

+ +

≥ +

1

4

51

51 133

2

δγωω

δαγ

ωω

Long ChannelValues

Note: Worst-Case Fmin = 4 (6dB) when gm= gg.

Stanford University

• MOS Device has gate current noise in addition todrain current noise. Optimum Zs exists.

• Optimum Qin relatively large. Power savingsand lower F by reducing WM1 for Qin < Qopt.

• HSPICE models of MOS noise are inadequate.

• Induced gate effects are not modeled at all.

• Hot Electron effects influence the noise power spectraldensity of channel-related noise sources.

Architecture / Noise Summary

Stanford University

Outline

• LNA Architecture / RF Noise

• Experimental Results

• Summary and Conclusions

Stanford University

Complete LNA Schematic

Vbias

Vdd Vdd

M1

M2M3

LgndLs

Ld Lout

Lvdd Lb2 Cb2

LgTm

Cm

Rs

Lb1

Cb1

M4

Vs

Input Bias Tee

Off Chip Matching

Output Bias Tee

To SpectrumAnalyzer

Stanford University

Die Photo

Stanford University

S21

Peak S21 22dB

Marker 2

Stanford University

S11

VSWR 1.38

Marker 2

Stanford University

S12

Marker 2

Null @ 1.5GHz

Stanford University

Reverse Isolation

M1

M2M3

Lgnd

Ls

Ld Lout

Lg

Substrate Node

• Substrate tied to lowestinductance signal ground.

• Parasitic capacitances fromspiral inductors and padsdegrade reverse isolation.

• Simulation with parasiticsshows null in S12 as seen inexperimental data.

Cg1+Cpad Cg2 Cd Cpad

Cgd31 2

3

Stanford University

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

Vdd (V)

NF

/ S

21 (

dB)

Noise Figure / S21 vs. Vdd

3.5dB NF / 22dB S21

Stanford University

Linearity - IP3

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

-36.

00

-34.

00

-32.

00

-30.

00

-28.

00

-26.

00

-24.

00

-22.

00

-20.

00

-18.

00

-16.

00

-14.

00

-12.

00

-10.

00

-8.0

0

-6.0

0

Source Power (dBm)

Out

put P

ower

(dB

m)

IP3 = -9.3dBm (Input)

1dB Comp. = -22dBm (Input)

Stanford University

Outline

• LNA Architecture / RF Noise

• Experimental Results

• Summary and Conclusions

Stanford University

Performance SummaryFrequency 1.5GHzNoise Figure 3.5dBS21 22dBIP3 (Input) -9.3dBm1dB Compression (Input) -22dBm

Supply Voltage 1.5VPower Dissipation 30mW

First Stage 7.5mW

Technology 0.6µm CMOSDie Area 0.12 mm2

Stanford University

Conclusions

• CMOS is suitable for low noise above 1GHz.

• 3.5dB NF is lowest to date for CMOS above 1GHz.

• 1dB NF can be expected with current generation.

• Current CMOS noise models, as in HSPICE, areinadequate for accurate simulation of RF noise.

• Significant noise contributors are absent from the models.

• Short channel effects have not been properly accounted for.

• More research is required.

Stanford University

Acknowledgments

Stanford Center for Integrated Systems

Air Force Office of Scientific Research

Howard Swain of Hewlett Packard

for many helpful discussions on CMOS noise